Cargando…

Enhancer RNA lnc-CES1-1 inhibits decidual cell migration by interacting with RNA-binding protein FUS and activating PPARγ in URPL

Unexplained recurrent pregnancy loss (URPL) is a significant reproductive health issue, affecting approximately 5% of pregnancies. Enhancer RNAs (eRNAs) have been reported to play important roles during embryo development and may be related to URPL. To investigate whether and how eRNAs are involved...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Zhenyao, Yu, Hao, Du, Guizhen, Han, Li, Huang, Xiaomin, Wu, Dan, Han, Xiumei, Xia, Yankai, Wang, Xinru, Lu, Chuncheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941017/
https://www.ncbi.nlm.nih.gov/pubmed/33738142
http://dx.doi.org/10.1016/j.omtn.2021.02.018
Descripción
Sumario:Unexplained recurrent pregnancy loss (URPL) is a significant reproductive health issue, affecting approximately 5% of pregnancies. Enhancer RNAs (eRNAs) have been reported to play important roles during embryo development and may be related to URPL. To investigate whether and how eRNAs are involved in URPL, we performed RNA sequencing in decidual tissue. Through comprehensive screening and validation, we identified a decidua-enriched eRNA long noncoding-CES1-1 (lnc-CES1-1) enriched in URPL patients and studied its function in decidua-associated cell lines (DACs). Higher expression of lnc-CES1-1 increased the level of inflammatory factors tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) and impaired the cell migration ability, which was attenuated by downregulating peroxisome proliferators-activated receptor γ (PPARγ). Upon activation by signal transduction and activation of transcription 4 (STAT4), lnc-CES1-1 interacted with the transcription factor fused in sarcoma (FUS) to upregulate the expression of PPARγ and affected cell migration. Taken together, these findings provide novel insights into the biological functions of decidua-associated lnc-CES1-1 and the molecular mechanisms underlying URPL. Our findings indicated that lnc-CES1-1 might be a potential candidate biomarker for URPL diagnosis and treatment.