Cargando…
Experimental data on radio frequency interference in microwave links using frequency scan measurements at 6 GHz, 7 GHz, and 8 GHz
One of the biggest challenges for wireless communication network operators is how to minimize or mitigate radio frequency interference (RFI) for efficient network services at the desired quality of service (QoS). Microwave radio links are highly susceptible to interference from narrow and wideband s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941074/ https://www.ncbi.nlm.nih.gov/pubmed/33732829 http://dx.doi.org/10.1016/j.dib.2021.106916 |
Sumario: | One of the biggest challenges for wireless communication network operators is how to minimize or mitigate radio frequency interference (RFI) for efficient network services at the desired quality of service (QoS). Microwave radio links are highly susceptible to interference from narrow and wideband sources. Interference ultimately affects network quality and contributes to the colossal loss of usable mobile data, leading to substantial operational costs for network operators. Additionally, the implementation of high capacity microwave links could potentially force the channels to point towards the same direction, posing a significant interference source. Radio frequency interference issues on the microwave links should be prioritized for prompt resolution or mitigation to achieve the minimum QoS requirement for the growing network subscribers. Toward this end, frequency scans are required to accurately picture the available frequency plan and channels based on the allocated spectrum. This article presents experimental data on radio frequency interference of active microwave links at 6 GHz, 7 GHz, and 8 GHz. The extensive frequency scans were obtained from eighteen active base stations located in Kogi, Lagos, and Rivers States in Nigeria. The frequency scans were carried out using the Anritsu MS2724C spectrum analyzer and a 0.6-meter antenna dish with full azimuth coverage. The analyzer captures the horizontal and vertical polarization. The frequency scan measurements reported in this article would be significantly useful to radio frequency interference detection and mitigation, preliminary network equipment positioning, frequency selection and assignment, and microwave network planning. |
---|