Cargando…
S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos
OBJECTIVES: S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. I...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/ https://www.ncbi.nlm.nih.gov/pubmed/33458941 http://dx.doi.org/10.1111/cpr.12990 |
_version_ | 1783662113257947136 |
---|---|
author | Niu, Ying‐Jie Zhou, Dongjie Cui, Xiang‐Shun |
author_facet | Niu, Ying‐Jie Zhou, Dongjie Cui, Xiang‐Shun |
author_sort | Niu, Ying‐Jie |
collection | PubMed |
description | OBJECTIVES: S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. MATERIALS AND METHODS: GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. RESULTS: GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. |
format | Online Article Text |
id | pubmed-7941228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79412282021-03-16 S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos Niu, Ying‐Jie Zhou, Dongjie Cui, Xiang‐Shun Cell Prolif Original Articles OBJECTIVES: S‐nitrosoglutathione reductase (GSNOR), a protein denitrosylase, protects the mitochondria from mitochondrial nitrosative stress. Mammalian preimplantation embryos are mitochondria‐rich, but the effects of GSNOR on mitochondrial function in preimplantation embryos are not well‐studied. In the present study, we investigate whether GSNOR plays a role in mitochondrial regulation during porcine preimplantation embryo development. MATERIALS AND METHODS: GSNOR dsRNA was employed to knock down the expression of GSNOR, and Nω‐Nitro‐L‐arginine methyl ester hydrochloride (L‐NAME), a pan‐NOS inhibitor, was used to prevent protein S‐nitrosylation. Mitochondrial amount and function in embryo development were assessed by performing immunofluorescence staining, Western blot, fluorescent probe and real‐time reverse transcription PCR. RESULTS: GSNOR knock‐down significantly impaired blastocyst formation and quality and markedly induced the increase in protein S‐nitrosylation. Notably, GSNOR knock‐down‐induced overproduction of S‐nitrosylation caused mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondria‐derived reactive oxygen species (ROS) increase and ATP deficiency. Interestingly, GSNOR knock‐down‐induced total mitochondrial amount increase, but the ratio of active mitochondria reduction, suggesting that the damaged mitochondria were accumulated and mitochondrial clearance was inhibited. In addition, damaged mitochondria produced more ROS, and caused DNA damage and apoptosis. Importantly, supplementation with L‐NAME reverses the increase in S‐nitrosylation, accumulation of damaged mitochondria, and oxidative stress‐induced cell death. Interestingly, autophagy was downregulated after GSNOR knock‐down, but reversed by L‐NAME treatment. Thus, GSNOR maintains mitochondrial homeostasis by promoting autophagy and the clearing of damaged mitochondria in porcine preimplantation embryos. John Wiley and Sons Inc. 2021-01-17 /pmc/articles/PMC7941228/ /pubmed/33458941 http://dx.doi.org/10.1111/cpr.12990 Text en © 2021 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Niu, Ying‐Jie Zhou, Dongjie Cui, Xiang‐Shun S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title_full | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title_fullStr | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title_full_unstemmed | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title_short | S‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
title_sort | s‐nitrosoglutathione reductase maintains mitochondrial homeostasis by promoting clearance of damaged mitochondria in porcine preimplantation embryos |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941228/ https://www.ncbi.nlm.nih.gov/pubmed/33458941 http://dx.doi.org/10.1111/cpr.12990 |
work_keys_str_mv | AT niuyingjie snitrosoglutathionereductasemaintainsmitochondrialhomeostasisbypromotingclearanceofdamagedmitochondriainporcinepreimplantationembryos AT zhoudongjie snitrosoglutathionereductasemaintainsmitochondrialhomeostasisbypromotingclearanceofdamagedmitochondriainporcinepreimplantationembryos AT cuixiangshun snitrosoglutathionereductasemaintainsmitochondrialhomeostasisbypromotingclearanceofdamagedmitochondriainporcinepreimplantationembryos |