Cargando…

Stromal cell‐derived factor‐1/Exendin‐4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo

OBJECTIVES: Stromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem c...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Qianyu, Du, Lingqian, Zhang, Rui, Kang, Wenyan, Ge, Shaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941242/
https://www.ncbi.nlm.nih.gov/pubmed/33511708
http://dx.doi.org/10.1111/cpr.12997
Descripción
Sumario:OBJECTIVES: Stromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo. METHODS: Cell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo. RESULTS: SDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4(+) cells and CD90(+)/CD34(‐) stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo. CONCLUSIONS: SDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.