Cargando…

Nanoscale twinning in Fe–Mn–Al–Ni martensite: a backscatter Kikuchi diffraction study

Iron-based Fe–Mn–Al–Ni shape-memory alloys are of rather low materials cost and show remarkable pseudoelastic properties. To further understand the martensitic transformation giving rise to the pseudoelastic properties, different Fe–Mn–Al–Ni alloys have been heat treated at 1473 K and quenched in ic...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Peter D. B., Martin, Stefan, Walnsch, Alexander, Thümmler, Martin, Kriegel, Mario J., Leineweber, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941309/
https://www.ncbi.nlm.nih.gov/pubmed/33833640
http://dx.doi.org/10.1107/S1600576720013631
Descripción
Sumario:Iron-based Fe–Mn–Al–Ni shape-memory alloys are of rather low materials cost and show remarkable pseudoelastic properties. To further understand the martensitic transformation giving rise to the pseudoelastic properties, different Fe–Mn–Al–Ni alloys have been heat treated at 1473 K and quenched in ice water. The martensite, which is formed from a body-centred cubic austenite, is commonly described as face-centered cubic (f.c.c.), even though there are also more complex, polytypical descriptions of martensite. The presently studied backscatter Kikuchi diffraction (BKD) patterns have been evaluated, showing a structure more complex than simple f.c.c. This structure can be described by nanoscale twins, diffracting simultaneously in the exciting volume. The twinned structure shows a tetragonal distortion, not uncommon for martensite in spite of the lack of interstitial elements. These features are evaluated by comparing the measured BKD patterns with dynamically simulated ones.