Cargando…
Instance Segmentation to Estimate Consumption of Corn Ears by Wild Animals for GMO Preference Tests
The Genetically Modified (GMO) Corn Experiment was performed to test the hypothesis that wild animals prefer Non-GMO corn and avoid eating GMO corn, which resulted in the collection of complex image data of consumed corn ears. This study develops a deep learning-based image processing pipeline that...
Autores principales: | Adke, Shrinidhi, Haro von Mogel, Karl, Jiang, Yu, Li, Changying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941411/ https://www.ncbi.nlm.nih.gov/pubmed/33733223 http://dx.doi.org/10.3389/frai.2020.593622 |
Ejemplares similares
-
Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt
por: Xu, Tianfang, et al.
Publicado: (2021) -
Lightweight and efficient neural network with SPSA attention for wheat ear detection
por: Dong, Yan, et al.
Publicado: (2022) -
Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy
por: Cataltas, Ozcan, et al.
Publicado: (2023) -
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
Unsupervised Text Segmentation Predicts Eye Fixations During Reading
por: Yang, Jinbiao, et al.
Publicado: (2022)