Cargando…
Study of morphological and textural features for classification of oral squamous cell carcinoma by traditional machine learning techniques
BACKGROUND: Oral squamous cell carcinoma (OSCC) is the most prevalent form of oral cancer. Very few researches have been carried out for the automatic diagnosis of OSCC using artificial intelligence techniques. Though biopsy is the ultimate test for cancer diagnosis, analyzing a biopsy report is a v...
Autores principales: | Rahman, Tabassum Yesmin, Mahanta, Lipi B., Choudhury, Hiten, Das, Anup K., Sarma, Jagannath D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941561/ https://www.ncbi.nlm.nih.gov/pubmed/33026718 http://dx.doi.org/10.1002/cnr2.1293 |
Ejemplares similares
-
Histopathological imaging database for oral cancer analysis
por: Rahman, Tabassum Yesmin, et al.
Publicado: (2020) -
Analysis of Morphological Features of Benign and Malignant Breast Cell Extracted From FNAC Microscopic Image Using the Pearsonian System of Curves
por: Rajbongshi, Nijara, et al.
Publicado: (2018) -
Automatic Detection and Classification of Breast Tumors in Ultrasonic Images Using Texture and Morphological Features
por: Su, Yanni, et al.
Publicado: (2011) -
Cirrhosis Classification Based on Texture Classification of Random Features
por: Liu, Hui, et al.
Publicado: (2014) -
A Machine Vision Approach for Classification of Skin Cancer Using Hybrid Texture Features
por: Zareen, Syeda Shamaila, et al.
Publicado: (2022)