Cargando…
Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking
BACKGROUND: We analyzed the effect of limitation of movement of the first metatarsophalangeal joint (FMJ) on the biomechanics of the lower limbs during walking. MATERIAL/METHODS: Eight healthy college students completed walking under barefoot (BF) and FMJ constraint (FMJC) conditions. We synchronous...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941761/ https://www.ncbi.nlm.nih.gov/pubmed/33664219 http://dx.doi.org/10.12659/MSM.930081 |
_version_ | 1783662190554775552 |
---|---|
author | Xu, Rui Zuo, Hao Ji, Youbo Li, Qiang Wang, Zhonghan Liu, He Wang, Jiarui Wei, Zheyi Li, Weihang Cong, Lin Li, Han Jin, Hui Wang, Jincheng |
author_facet | Xu, Rui Zuo, Hao Ji, Youbo Li, Qiang Wang, Zhonghan Liu, He Wang, Jiarui Wei, Zheyi Li, Weihang Cong, Lin Li, Han Jin, Hui Wang, Jincheng |
author_sort | Xu, Rui |
collection | PubMed |
description | BACKGROUND: We analyzed the effect of limitation of movement of the first metatarsophalangeal joint (FMJ) on the biomechanics of the lower limbs during walking. MATERIAL/METHODS: Eight healthy college students completed walking under barefoot (BF) and FMJ constraint (FMJC) conditions. We synchronously collected kinematics and dynamics data, and calculated the torque, power, and work of hip, knee, and ankle joints. RESULTS: Compared with normal conditions, when the FMJ is restricted from walking, the maximum ankle dorsiflexion angle is significantly increased (P<0.001), the maximum plantar flexion angle is significantly reduced (P<0.001), the maximum plantar flexion torque (P<0.001) and the maximum dorsiflexion torque (P<0.05) increased significantly, the maximum power increased significantly (P<0.001), the minimum power decreased significantly (P<0.001), and the negative work increased significantly (P<0.001). The torque of hip and knee joints increased significantly (P<0.05). CONCLUSIONS: After the movement of the FMJ is restricted, the human body mainly compensates and transfers compensation by increasing the angle of dorsiflexion, increasing work and the activity level of surrounding muscles through the ankle joint, thereby increasing the torque load of the knee and hip joints to maintain the dynamic balance of kinematics. FMJC condition increases the energy consumption of the human ankle, knee, and hip joints during walking. The load is compensated by the gradual attenuation of the ankle, knee, and hip. Long-term limitation may cause damage to the posterior calf muscles and increase the incidence of knee arthritis. |
format | Online Article Text |
id | pubmed-7941761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79417612021-03-10 Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking Xu, Rui Zuo, Hao Ji, Youbo Li, Qiang Wang, Zhonghan Liu, He Wang, Jiarui Wei, Zheyi Li, Weihang Cong, Lin Li, Han Jin, Hui Wang, Jincheng Med Sci Monit Clinical Research BACKGROUND: We analyzed the effect of limitation of movement of the first metatarsophalangeal joint (FMJ) on the biomechanics of the lower limbs during walking. MATERIAL/METHODS: Eight healthy college students completed walking under barefoot (BF) and FMJ constraint (FMJC) conditions. We synchronously collected kinematics and dynamics data, and calculated the torque, power, and work of hip, knee, and ankle joints. RESULTS: Compared with normal conditions, when the FMJ is restricted from walking, the maximum ankle dorsiflexion angle is significantly increased (P<0.001), the maximum plantar flexion angle is significantly reduced (P<0.001), the maximum plantar flexion torque (P<0.001) and the maximum dorsiflexion torque (P<0.05) increased significantly, the maximum power increased significantly (P<0.001), the minimum power decreased significantly (P<0.001), and the negative work increased significantly (P<0.001). The torque of hip and knee joints increased significantly (P<0.05). CONCLUSIONS: After the movement of the FMJ is restricted, the human body mainly compensates and transfers compensation by increasing the angle of dorsiflexion, increasing work and the activity level of surrounding muscles through the ankle joint, thereby increasing the torque load of the knee and hip joints to maintain the dynamic balance of kinematics. FMJC condition increases the energy consumption of the human ankle, knee, and hip joints during walking. The load is compensated by the gradual attenuation of the ankle, knee, and hip. Long-term limitation may cause damage to the posterior calf muscles and increase the incidence of knee arthritis. International Scientific Literature, Inc. 2021-03-05 /pmc/articles/PMC7941761/ /pubmed/33664219 http://dx.doi.org/10.12659/MSM.930081 Text en © Med Sci Monit, 2021 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Clinical Research Xu, Rui Zuo, Hao Ji, Youbo Li, Qiang Wang, Zhonghan Liu, He Wang, Jiarui Wei, Zheyi Li, Weihang Cong, Lin Li, Han Jin, Hui Wang, Jincheng Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title | Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title_full | Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title_fullStr | Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title_full_unstemmed | Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title_short | Effects of Short-Term Limitation of Movement of the First Metatarsophalangeal Joint on the Biomechanics of the Ipsilateral Hip, Knee, and Ankle Joints During Walking |
title_sort | effects of short-term limitation of movement of the first metatarsophalangeal joint on the biomechanics of the ipsilateral hip, knee, and ankle joints during walking |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941761/ https://www.ncbi.nlm.nih.gov/pubmed/33664219 http://dx.doi.org/10.12659/MSM.930081 |
work_keys_str_mv | AT xurui effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT zuohao effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT jiyoubo effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT liqiang effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT wangzhonghan effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT liuhe effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT wangjiarui effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT weizheyi effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT liweihang effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT conglin effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT lihan effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT jinhui effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking AT wangjincheng effectsofshorttermlimitationofmovementofthefirstmetatarsophalangealjointonthebiomechanicsoftheipsilateralhipkneeandanklejointsduringwalking |