Cargando…

LncRNA MALAT1 aggravates oxygen‐glucose deprivation/reoxygenation-induced neuronal endoplasmic reticulum stress and apoptosis via the miR-195a-5p/HMGA1 axis

BACKGROUND: This study aimed to investigate the potential role and molecular mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in cerebral ischemia/reperfusion injury. RESULTS: Using an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we determined that...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Ying, Yi, Lian, Li, Qianqian, Liu, Tingjiao, Yang, Shanshan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941907/
https://www.ncbi.nlm.nih.gov/pubmed/33750458
http://dx.doi.org/10.1186/s40659-021-00331-9
Descripción
Sumario:BACKGROUND: This study aimed to investigate the potential role and molecular mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in cerebral ischemia/reperfusion injury. RESULTS: Using an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we determined that the expression of MALAT1 was significantly increased during OGD/R. MALAT1 knockdown reversed OGD/R-induced apoptosis and ER stress. Mechanistically, MALAT1 promoted OGD/R-induced neuronal injury through sponging miR-195a-5p to upregulating high mobility group AT-hook1 (HMGA1). CONCLUSIONS: Collectively, these data demonstrate the mechanism underlying the invovlvement of MALAT1 in cerebral ischemia/reperfusion injury, thus providing translational evidence that MALAT1 may serve as a novel biomarker and therapeutic target for ischemic stroke.