Cargando…
Deep active learning for classifying cancer pathology reports
BACKGROUND: Automated text classification has many important applications in the clinical setting; however, obtaining labelled data for training machine learning and deep learning models is often difficult and expensive. Active learning techniques may mitigate this challenge by reducing the amount o...
Autores principales: | De Angeli, Kevin, Gao, Shang, Alawad, Mohammed, Yoon, Hong-Jun, Schaefferkoetter, Noah, Wu, Xiao-Cheng, Durbin, Eric B., Doherty, Jennifer, Stroup, Antoinette, Coyle, Linda, Penberthy, Lynne, Tourassi, Georgia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7941989/ https://www.ncbi.nlm.nih.gov/pubmed/33750288 http://dx.doi.org/10.1186/s12859-021-04047-1 |
Ejemplares similares
-
Using case-level context to classify cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2020) -
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Automatic information extraction from childhood cancer pathology reports
por: Yoon, Hong-Jun, et al.
Publicado: (2022) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022)