Cargando…

Reservoir hosts prediction for COVID-19 by hybrid transfer learning model

The recent outbreak of COVID-19 has infected millions of people around the world, which is leading to the global emergency. In the event of the virus outbreak, it is crucial to get the carriers of the virus timely and precisely, then the animal origins can be isolated for further infection. Traditio...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yun, Guo, Jing, Wang, Pei, Wang, Yaowei, Yu, Minghao, Wang, Xiang, Yang, Po, Sun, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7942058/
https://www.ncbi.nlm.nih.gov/pubmed/33711547
http://dx.doi.org/10.1016/j.jbi.2021.103736
Descripción
Sumario:The recent outbreak of COVID-19 has infected millions of people around the world, which is leading to the global emergency. In the event of the virus outbreak, it is crucial to get the carriers of the virus timely and precisely, then the animal origins can be isolated for further infection. Traditional identifications rely on fields and laboratory researches that lag the responses to emerging epidemic prevention. With the development of machine learning, the efficiency of predicting the viral hosts has been demonstrated by recent researchers. However, the problems of the limited annotated virus data and imbalanced hosts information restrict these approaches to obtain a better result. To assure the high reliability of predicting the animal origins on COVID-19, we extend transfer learning and ensemble learning to present a hybrid transfer learning model. When predicting the hosts of newly discovered virus, our model provides a novel solution to utilize the related virus domain as auxiliary to help building a robust model for target virus domain. The simulation results on several UCI benchmarks and viral genome datasets demonstrate that our model outperforms the general classical methods under the condition of limited target training sets and class-imbalance problems. By setting the coronavirus as target domain and other related virus as source domain, the feasibility of our approach is evaluated. Finally, we show the animal reservoirs prediction of the COVID-19 for further analysing.