Cargando…
ROS-ERK Pathway as Dual Mediators of Cellular Injury and Autophagy-Associated Adaptive Response in Urinary Protein-Irritated Renal Tubular Epithelial Cells
ERK, an extracellular signal-regulated protein kinase, is involved in various biological responses, such as cell proliferation and differentiation, cell morphology maintenance, cytoskeletal construction, apoptosis, and canceration of cells. In this study, we focused on ERK pathway on cellular injury...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943278/ https://www.ncbi.nlm.nih.gov/pubmed/33748286 http://dx.doi.org/10.1155/2021/6614848 |
Sumario: | ERK, an extracellular signal-regulated protein kinase, is involved in various biological responses, such as cell proliferation and differentiation, cell morphology maintenance, cytoskeletal construction, apoptosis, and canceration of cells. In this study, we focused on ERK pathway on cellular injury and autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells and explored the potential mechanisms underlying it. By using antioxidants N-acetylcysteine and catalase, we found that ERK pathway was activated by a reactive oxygen species- (ROS-) dependent mechanism after exposure to urinary proteins. What is more, ERK inhibitor U0126 could decrease the release of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and the number of apoptotic cells induced by urinary proteins, indicating the damaging effects of ERK pathway in mediating cellular injury and apoptosis in HK-2 cells. Interestingly, we also found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II (a key marker of autophagy) and the decreased expression of p62 (autophagic substrate) induced by urinary proteins were reversed by U0126, suggesting autophagy was activated by ERK pathway. Furthermore, rapamycin reduced urinary protein-induced NGAL and KIM-1 secretion and cell growth inhibition, while chloroquine played the opposite effect, indicating that autophagy activation by ERK pathway was an adaptive response in the exposure to urinary proteins. Taken together, our results indicate that activated ROS-ERK pathway can induce cellular injury and in the meantime provide an autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells. |
---|