Cargando…
iCovidCare: Intelligent health monitoring framework for COVID-19 using ensemble random forest in edge networks
The COVID-19 outbreak is in its growing stage due to the lack of standard diagnosis for the patients. In recent times, various models with machine learning have been developed to predict and diagnose novel coronavirus. However, the existing models fail to take an instant decision for detecting the C...
Autores principales: | Adhikari, Mainak, Munusamy, Ambigavathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943395/ http://dx.doi.org/10.1016/j.iot.2021.100385 |
Ejemplares similares
-
EEI-IoT: Edge-Enabled Intelligent IoT Framework for Early Detection of COVID-19 Threats
por: Deebak, B. D., et al.
Publicado: (2023) -
Cluster ensemble based on Random Forests for genetic data
por: Alhusain, Luluah, et al.
Publicado: (2017) -
Pulmonary Lesion Classification Framework Using the Weighted Ensemble Classification with Random Forest and CNN Models for EBUS Images
por: Khomkham, Banphatree, et al.
Publicado: (2022) -
Intelligence at the Edge
por: Harvey, Michael
Publicado: (2020) -
Utilizing the intelligence edge framework for robotic upper limb rehabilitation in home
por: Jamwal, Prashant K., et al.
Publicado: (2023)