Cargando…

A self-organized synthetic morphogenic liposome responds with shape changes to local light cues

Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by...

Descripción completa

Detalles Bibliográficos
Autores principales: Gavriljuk, Konstantin, Scocozza, Bruno, Ghasemalizadeh, Farid, Seidel, Hans, Nandan, Akhilesh P., Campos-Medina, Manuel, Schmick, Malte, Koseska, Aneta, Bastiaens, Philippe I. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943604/
https://www.ncbi.nlm.nih.gov/pubmed/33750780
http://dx.doi.org/10.1038/s41467-021-21679-2
_version_ 1783662531568467968
author Gavriljuk, Konstantin
Scocozza, Bruno
Ghasemalizadeh, Farid
Seidel, Hans
Nandan, Akhilesh P.
Campos-Medina, Manuel
Schmick, Malte
Koseska, Aneta
Bastiaens, Philippe I. H.
author_facet Gavriljuk, Konstantin
Scocozza, Bruno
Ghasemalizadeh, Farid
Seidel, Hans
Nandan, Akhilesh P.
Campos-Medina, Manuel
Schmick, Malte
Koseska, Aneta
Bastiaens, Philippe I. H.
author_sort Gavriljuk, Konstantin
collection PubMed
description Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. Responding to light cues in analogy to morphogens, this biomimetic design embodies basic principles of localized Rho-GTPase signal transduction that generate an intracellular MT-regulator signaling gradient. Light-induced signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal tubulin concentration. The resulting membrane deformations enable recursive coupling of the MT-aster with the signaling system, which generates global self-organized morphologies that reorganize towards local external cues in dependence on prior shape. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis.
format Online
Article
Text
id pubmed-7943604
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79436042021-03-28 A self-organized synthetic morphogenic liposome responds with shape changes to local light cues Gavriljuk, Konstantin Scocozza, Bruno Ghasemalizadeh, Farid Seidel, Hans Nandan, Akhilesh P. Campos-Medina, Manuel Schmick, Malte Koseska, Aneta Bastiaens, Philippe I. H. Nat Commun Article Reconstituting artificial proto-cells capable of transducing extracellular signals into cytoskeletal changes can reveal fundamental principles of how non-equilibrium phenomena in cellular signal transduction affect morphogenesis. Here, we generated a Synthetic Morphogenic Membrane System (SynMMS) by encapsulating a dynamic microtubule (MT) aster and a light-inducible signaling system driven by GTP/ATP chemical potential into cell-sized liposomes. Responding to light cues in analogy to morphogens, this biomimetic design embodies basic principles of localized Rho-GTPase signal transduction that generate an intracellular MT-regulator signaling gradient. Light-induced signaling promotes membrane-deforming growth of MT-filaments by dynamically elevating the membrane-proximal tubulin concentration. The resulting membrane deformations enable recursive coupling of the MT-aster with the signaling system, which generates global self-organized morphologies that reorganize towards local external cues in dependence on prior shape. SynMMS thereby signifies a step towards bio-inspired engineering of self-organized cellular morphogenesis. Nature Publishing Group UK 2021-03-09 /pmc/articles/PMC7943604/ /pubmed/33750780 http://dx.doi.org/10.1038/s41467-021-21679-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gavriljuk, Konstantin
Scocozza, Bruno
Ghasemalizadeh, Farid
Seidel, Hans
Nandan, Akhilesh P.
Campos-Medina, Manuel
Schmick, Malte
Koseska, Aneta
Bastiaens, Philippe I. H.
A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title_full A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title_fullStr A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title_full_unstemmed A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title_short A self-organized synthetic morphogenic liposome responds with shape changes to local light cues
title_sort self-organized synthetic morphogenic liposome responds with shape changes to local light cues
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943604/
https://www.ncbi.nlm.nih.gov/pubmed/33750780
http://dx.doi.org/10.1038/s41467-021-21679-2
work_keys_str_mv AT gavriljukkonstantin aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT scocozzabruno aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT ghasemalizadehfarid aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT seidelhans aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT nandanakhileshp aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT camposmedinamanuel aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT schmickmalte aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT koseskaaneta aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT bastiaensphilippeih aselforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT gavriljukkonstantin selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT scocozzabruno selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT ghasemalizadehfarid selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT seidelhans selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT nandanakhileshp selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT camposmedinamanuel selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT schmickmalte selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT koseskaaneta selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues
AT bastiaensphilippeih selforganizedsyntheticmorphogenicliposomerespondswithshapechangestolocallightcues