Cargando…
Comparison of Methods for Feature Selection in Clustering of High-Dimensional RNA-Sequencing Data to Identify Cancer Subtypes
Cancer subtype identification is important to facilitate cancer diagnosis and select effective treatments. Clustering of cancer patients based on high-dimensional RNA-sequencing data can be used to detect novel subtypes, but only a subset of the features (e.g., genes) contains information related to...
Autores principales: | Källberg, David, Vidman, Linda, Rydén, Patrik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943624/ https://www.ncbi.nlm.nih.gov/pubmed/33719342 http://dx.doi.org/10.3389/fgene.2021.632620 |
Ejemplares similares
-
Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study
por: Vidman, Linda, et al.
Publicado: (2019) -
Combining epigenetic and clinicopathological variables improves specificity in prognostic prediction in clear cell renal cell carcinoma
por: Andersson-Evelönn, Emma, et al.
Publicado: (2020) -
Evolutionary selection identifies critical immune-relevant genes in lung cancer subtypes
por: Luddy, Kimberly A., et al.
Publicado: (2022) -
The Key Genes for Perineural Invasion in Pancreatic Ductal Adenocarcinoma Identified With Monte-Carlo Feature Selection Method
por: Zhu, Jin-Hui, et al.
Publicado: (2020) -
CEPICS: A Comparison and Evaluation Platform for Integration Methods in Cancer Subtyping
por: Duan, Ran, et al.
Publicado: (2019)