Cargando…
A Deep Learning Approach for the Photoacoustic Tomography Recovery From Undersampled Measurements
Photoacoustic tomography (PAT) is a propitious imaging modality, which is helpful for biomedical study. However, fast PAT imaging and denoising is an exigent task in medical research. To address the problem, recently, methods based on compressed sensing (CS) have been proposed, which accede the low...
Autores principales: | Shahid, Husnain, Khalid, Adnan, Liu, Xin, Irfan, Muhammad, Ta, Dean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943731/ https://www.ncbi.nlm.nih.gov/pubmed/33716643 http://dx.doi.org/10.3389/fnins.2021.598693 |
Ejemplares similares
-
Three-dimensional reconstructing undersampled photoacoustic microscopy images using deep learning
por: Seong, Daewoon, et al.
Publicado: (2022) -
Deep image prior for undersampling high-speed photoacoustic microscopy
por: Vu, Tri, et al.
Publicado: (2021) -
Neurovascular Photoacoustic Tomography
por: Hu, Song, et al.
Publicado: (2010) -
Complexities of deep learning-based undersampled MR image reconstruction
por: Noordman, Constant Richard, et al.
Publicado: (2023) -
Deep learning in photoacoustic tomography: current approaches and future directions
por: Hauptmann, Andreas, et al.
Publicado: (2020)