Cargando…
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
The class of 9–12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough understandin...
Autores principales: | Mamun, Osman, Wenzlick, Madison, Hawk, Jeffrey, Devanathan, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943809/ https://www.ncbi.nlm.nih.gov/pubmed/33750812 http://dx.doi.org/10.1038/s41598-021-83694-z |
Ejemplares similares
-
Uncertainty quantification for Bayesian active learning in rupture life prediction of ferritic steels
por: Mamun, Osman, et al.
Publicado: (2022) -
Simulation of an Austenite-Twinned-Martensite Interface
por: Kearsley, A.J., et al.
Publicado: (2003) -
Stress-induced detwinning and martensite transformation in an austenite Ni–Mn–Ga alloy with martensite cluster under uniaxial loading
por: Hou, Long, et al.
Publicado: (2019) -
Steel forgings for pressure purposes - Part 5: martensitic, austenitic and austenitic-ferritic stainless steels
por: Association Française de Normalisation. Paris
Publicado: (2000) -
Effects of Austenitizing Temperature on Tensile and Impact Properties of a Martensitic Stainless Steel Containing Metastable Retained Austenite
por: Deng, Biao, et al.
Publicado: (2021)