Cargando…
Machine learning for early prediction of in‐hospital cardiac arrest in patients with acute coronary syndromes
BACKGROUND: Previous studies have used machine leaning to predict clinical deterioration to improve outcome prediction. However, no study has used machine learning to predict cardiac arrest in patients with acute coronary syndrome (ACS). Algorithms are required to generate high‐performance models fo...
Autores principales: | Wu, Ting Ting, Lin, Xiu Quan, Mu, Yan, Li, Hong, Guo, Yang Song |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Periodicals, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7943901/ https://www.ncbi.nlm.nih.gov/pubmed/33586214 http://dx.doi.org/10.1002/clc.23541 |
Ejemplares similares
-
Decision tree model for predicting in‐hospital cardiac arrest among patients admitted with acute coronary syndrome
por: Li, Hong, et al.
Publicado: (2019) -
Use of machine learning models to predict in‐hospital mortality in patients with acute coronary syndrome
por: Li, Rong, et al.
Publicado: (2022) -
Association of acute myocardial infarction cardiac arrest patient volume and in‐hospital mortality in the United States: Insights from the National Cardiovascular Data Registry Acute Coronary Treatment And Intervention Outcomes Network Registry
por: Kontos, Michael C., et al.
Publicado: (2019) -
General health condition of patients hospitalized after an incident of in‐hospital or out‐of hospital sudden cardiac arrest with return of spontaneous circulation
por: Stasiowski, Michał, et al.
Publicado: (2021) -
Association of hemoglobin with incidence of in-hospital cardiac
arrest in patients with acute coronary syndrome complicated by cardiogenic
shock
por: Xu, Tiancheng, et al.
Publicado: (2019)