Cargando…
Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis
Toxicities associated with radiation therapy are common, symptomatically devastating, and costly. The best chance to effectively mitigate radiation-associated normal tissue side effects are interventions aimed at disrupting the biological cascade, which is the basis for toxicity development, while s...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944116/ https://www.ncbi.nlm.nih.gov/pubmed/33716500 http://dx.doi.org/10.2147/DDDT.S267400 |
_version_ | 1783662629930139648 |
---|---|
author | Sonis, Stephen T |
author_facet | Sonis, Stephen T |
author_sort | Sonis, Stephen T |
collection | PubMed |
description | Toxicities associated with radiation therapy are common, symptomatically devastating, and costly. The best chance to effectively mitigate radiation-associated normal tissue side effects are interventions aimed at disrupting the biological cascade, which is the basis for toxicity development, while simultaneously not reducing the beneficial impact of radiation on tumor. Oxidative stress is a key initiator of radiation-associated normal tissue injury as physiologic antioxidant mechanisms are overwhelmed by the accumulation of effects produced by fractionated treatment regimens. And fundamental to this is the generation of superoxide, which is normally removed by superoxide dismutases (SODs). Attempts to supplement the activity of endogenous SOD to prevent radiation-induced normal tissue injury have included the administration of bovine-derived SOD and increasing SOD production using gene transfer, neither of which has resulted in a clinically acceptable therapy. A third approach has been to develop synthetic small molecule dismutase mimetics. This approach has led to the creation and development of avasopasem manganese, a unique and specific dismutase mimetic that, in clinical trials, has shown promising potential to reduce the incidence, severity and duration of severe oral mucositis amongst patients being treated with concomitant chemoradiation for cancers of the head and neck. Further, avasopasem and related analogues have demonstrated mechanism-related antitumor synergy in combination with high dose per fraction radiotherapy, an observation that is also being tested in clinical trials. An ongoing Phase 3 trial seeks to confirm avasopasem manganese as an effective intervention for severe oral mucositis associated with chemoradiation in head and neck cancer patients. |
format | Online Article Text |
id | pubmed-7944116 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-79441162021-03-11 Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis Sonis, Stephen T Drug Des Devel Ther Review Toxicities associated with radiation therapy are common, symptomatically devastating, and costly. The best chance to effectively mitigate radiation-associated normal tissue side effects are interventions aimed at disrupting the biological cascade, which is the basis for toxicity development, while simultaneously not reducing the beneficial impact of radiation on tumor. Oxidative stress is a key initiator of radiation-associated normal tissue injury as physiologic antioxidant mechanisms are overwhelmed by the accumulation of effects produced by fractionated treatment regimens. And fundamental to this is the generation of superoxide, which is normally removed by superoxide dismutases (SODs). Attempts to supplement the activity of endogenous SOD to prevent radiation-induced normal tissue injury have included the administration of bovine-derived SOD and increasing SOD production using gene transfer, neither of which has resulted in a clinically acceptable therapy. A third approach has been to develop synthetic small molecule dismutase mimetics. This approach has led to the creation and development of avasopasem manganese, a unique and specific dismutase mimetic that, in clinical trials, has shown promising potential to reduce the incidence, severity and duration of severe oral mucositis amongst patients being treated with concomitant chemoradiation for cancers of the head and neck. Further, avasopasem and related analogues have demonstrated mechanism-related antitumor synergy in combination with high dose per fraction radiotherapy, an observation that is also being tested in clinical trials. An ongoing Phase 3 trial seeks to confirm avasopasem manganese as an effective intervention for severe oral mucositis associated with chemoradiation in head and neck cancer patients. Dove 2021-03-05 /pmc/articles/PMC7944116/ /pubmed/33716500 http://dx.doi.org/10.2147/DDDT.S267400 Text en © 2021 Sonis. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Review Sonis, Stephen T Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title | Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title_full | Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title_fullStr | Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title_full_unstemmed | Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title_short | Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis |
title_sort | superoxide dismutase as an intervention for radiation therapy-associated toxicities: review and profile of avasopasem manganese as a treatment option for radiation-induced mucositis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944116/ https://www.ncbi.nlm.nih.gov/pubmed/33716500 http://dx.doi.org/10.2147/DDDT.S267400 |
work_keys_str_mv | AT sonisstephent superoxidedismutaseasaninterventionforradiationtherapyassociatedtoxicitiesreviewandprofileofavasopasemmanganeseasatreatmentoptionforradiationinducedmucositis |