Cargando…

Deep Learning for Understanding Satellite Imagery: An Experimental Survey

Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, Luo, Dave, Prasad, Manjunath, Fleer, Sascha, Göpfert, Jan Philip, Tandon, Akshat, Mollard, Guillaume, Rayaprolu, Nikhil, Salathe, Marcel, Schilling, Malte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944145/
https://www.ncbi.nlm.nih.gov/pubmed/33733198
http://dx.doi.org/10.3389/frai.2020.534696
_version_ 1783662636613763072
author Mohanty, Sharada Prasanna
Czakon, Jakub
Kaczmarek, Kamil A.
Pyskir, Andrzej
Tarasiewicz, Piotr
Kunwar, Saket
Rohrbach, Janick
Luo, Dave
Prasad, Manjunath
Fleer, Sascha
Göpfert, Jan Philip
Tandon, Akshat
Mollard, Guillaume
Rayaprolu, Nikhil
Salathe, Marcel
Schilling, Malte
author_facet Mohanty, Sharada Prasanna
Czakon, Jakub
Kaczmarek, Kamil A.
Pyskir, Andrzej
Tarasiewicz, Piotr
Kunwar, Saket
Rohrbach, Janick
Luo, Dave
Prasad, Manjunath
Fleer, Sascha
Göpfert, Jan Philip
Tandon, Akshat
Mollard, Guillaume
Rayaprolu, Nikhil
Salathe, Marcel
Schilling, Malte
author_sort Mohanty, Sharada Prasanna
collection PubMed
description Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as [Formula: see text] and [Formula: see text] —from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation.
format Online
Article
Text
id pubmed-7944145
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79441452021-03-16 Deep Learning for Understanding Satellite Imagery: An Experimental Survey Mohanty, Sharada Prasanna Czakon, Jakub Kaczmarek, Kamil A. Pyskir, Andrzej Tarasiewicz, Piotr Kunwar, Saket Rohrbach, Janick Luo, Dave Prasad, Manjunath Fleer, Sascha Göpfert, Jan Philip Tandon, Akshat Mollard, Guillaume Rayaprolu, Nikhil Salathe, Marcel Schilling, Malte Front Artif Intell Artificial Intelligence Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward automated satellite image translation. To facilitate research in this direction, we introduce the Satellite Imagery Competition using a modified SpaceNet dataset. Participants had to come up with different segmentation models to detect positions of buildings on satellite images. In this work, we present five approaches based on improvements of U-Net and Mask R-Convolutional Neuronal Networks models, coupled with unique training adaptations using boosting algorithms, morphological filter, Conditional Random Fields and custom losses. The good results—as high as [Formula: see text] and [Formula: see text] —from these models demonstrate the feasibility of Deep Learning in automated satellite image annotation. Frontiers Media S.A. 2020-11-16 /pmc/articles/PMC7944145/ /pubmed/33733198 http://dx.doi.org/10.3389/frai.2020.534696 Text en Copyright © 2020 Mohanty, Czakon, Kaczmarek, Pyskir, Tarasiewicz, Kunwar, Rohrbach, Luo, Prasad, Fleer, Göpfert, Tandon, Mollard, Rayaprolu, Salathé, and Schilling. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Artificial Intelligence
Mohanty, Sharada Prasanna
Czakon, Jakub
Kaczmarek, Kamil A.
Pyskir, Andrzej
Tarasiewicz, Piotr
Kunwar, Saket
Rohrbach, Janick
Luo, Dave
Prasad, Manjunath
Fleer, Sascha
Göpfert, Jan Philip
Tandon, Akshat
Mollard, Guillaume
Rayaprolu, Nikhil
Salathe, Marcel
Schilling, Malte
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title_full Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title_fullStr Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title_full_unstemmed Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title_short Deep Learning for Understanding Satellite Imagery: An Experimental Survey
title_sort deep learning for understanding satellite imagery: an experimental survey
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944145/
https://www.ncbi.nlm.nih.gov/pubmed/33733198
http://dx.doi.org/10.3389/frai.2020.534696
work_keys_str_mv AT mohantysharadaprasanna deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT czakonjakub deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT kaczmarekkamila deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT pyskirandrzej deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT tarasiewiczpiotr deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT kunwarsaket deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT rohrbachjanick deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT luodave deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT prasadmanjunath deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT fleersascha deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT gopfertjanphilip deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT tandonakshat deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT mollardguillaume deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT rayaprolunikhil deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT salathemarcel deeplearningforunderstandingsatelliteimageryanexperimentalsurvey
AT schillingmalte deeplearningforunderstandingsatelliteimageryanexperimentalsurvey