Cargando…
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
Translating satellite imagery into maps requires intensive effort and time, especially leading to inaccurate maps of the affected regions during disaster and conflict. The combination of availability of recent datasets and advances in computer vision made through deep learning paved the way toward a...
Autores principales: | Mohanty, Sharada Prasanna, Czakon, Jakub, Kaczmarek, Kamil A., Pyskir, Andrzej, Tarasiewicz, Piotr, Kunwar, Saket, Rohrbach, Janick, Luo, Dave, Prasad, Manjunath, Fleer, Sascha, Göpfert, Jan Philip, Tandon, Akshat, Mollard, Guillaume, Rayaprolu, Nikhil, Salathe, Marcel, Schilling, Malte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944145/ https://www.ncbi.nlm.nih.gov/pubmed/33733198 http://dx.doi.org/10.3389/frai.2020.534696 |
Ejemplares similares
-
Satellite imagery and machine learning for identification of aridity risk in central Java Indonesia
por: Prasetyo, Sri Yulianto Joko, et al.
Publicado: (2021) -
Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health
por: Durso, Andrew M., et al.
Publicado: (2021) -
COVID-Twitter-BERT: A natural language processing model to analyse COVID-19 content on Twitter
por: Müller, Martin, et al.
Publicado: (2023) -
Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest
por: Johansen, Kasper, et al.
Publicado: (2020) -
Artificial Intelligence for Prognostic Scores in Oncology: a Benchmarking Study
por: Loureiro, Hugo, et al.
Publicado: (2021)