Cargando…
Application of deep learning to predict underestimation in ductal carcinoma in situ of the breast with ultrasound
BACKGROUND: To develop an ultrasound-based deep learning model to predict postoperative upgrading of pure ductal carcinoma in situ (DCIS) diagnosed by core needle biopsy (CNB) before surgery. METHODS: Of the 360 patients with DCIS diagnosed by CNB and identified retrospectively, 180 had lesions upst...
Autores principales: | Qian, Lang, Lv, Zhikun, Zhang, Kai, Wang, Kun, Zhu, Qian, Zhou, Shichong, Chang, Cai, Tian, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944276/ https://www.ncbi.nlm.nih.gov/pubmed/33708922 http://dx.doi.org/10.21037/atm-20-3981 |
Ejemplares similares
-
Application of deep learning to identify ductal carcinoma in situ and microinvasion of the breast using ultrasound imaging
por: Zhu, Meng, et al.
Publicado: (2022) -
Ductal carcinoma in situ: a risk prediction model for the underestimation of invasive breast cancer
por: Park, Ko Woon, et al.
Publicado: (2022) -
Prediction of Sentinel Lymph Node Metastasis in Breast Ductal Carcinoma In Situ Diagnosed by Preoperative Core Needle Biopsy
por: Zhang, Kai, et al.
Publicado: (2020) -
Predicting Underestimation of Invasive Cancer in Patients with Core-Needle-Biopsy-Diagnosed Ductal Carcinoma In Situ Using Deep Learning Algorithms
por: Do, Luu-Ngoc, et al.
Publicado: (2022) -
Ductal carcinoma in situ diagnosed using an ultrasound-guided 14-gauge core needle biopsy of breast masses: can underestimation be predicted preoperatively?
por: Park, Sung Hee, et al.
Publicado: (2014)