Cargando…
Development and validation of a risk stratification model for predicting the mortality of acute kidney injury in critical care patients
BACKGROUND: This study aimed to develop and validate a model for mortality risk stratification of intensive care unit (ICU) patients with acute kidney injury (AKI) using the machine learning technique. METHODS: Eligible data were extracted from the Medical Information Mart for Intensive Care (MIMIC-...
Autores principales: | Huang, Haofan, Liu, Yong, Wu, Ming, Gao, Yi, Yu, Xiaxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944298/ https://www.ncbi.nlm.nih.gov/pubmed/33708950 http://dx.doi.org/10.21037/atm-20-5723 |
Ejemplares similares
-
A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit
por: Zhuang, Jinhu, et al.
Publicado: (2023) -
Stratified Mortality Prediction of Patients with Acute Kidney Injury in Critical Care
por: Xu, Zhenxing, et al.
Publicado: (2019) -
Development of a risk stratification-based model for prediction of acute kidney injury in critically ill patients
por: Chen, Yu, et al.
Publicado: (2019) -
Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study
por: Huang, Bingsheng, et al.
Publicado: (2021) -
Derivation and validation of urinary TIMP-1 for the prediction of acute kidney injury and mortality in critically ill children
por: Huang, Hui, et al.
Publicado: (2022)