Cargando…
Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features
BACKGROUND: To investigate the feasibility of integrating global radiomics and local deep features based on multi-modal magnetic resonance imaging (MRI) for developing a noninvasive glioma grading model. METHODS: In this study, 567 patients [211 patients with glioblastomas (GBMs) and 356 patients wi...
Autores principales: | Ning, Zhenyuan, Luo, Jiaxiu, Xiao, Qing, Cai, Longmei, Chen, Yuting, Yu, Xiaohui, Wang, Jian, Zhang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944310/ https://www.ncbi.nlm.nih.gov/pubmed/33708925 http://dx.doi.org/10.21037/atm-20-4076 |
Ejemplares similares
-
Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences
por: Qin, Jiang-bo, et al.
Publicado: (2017) -
Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging
por: Hu, Jisu, et al.
Publicado: (2016) -
Observing deep radiomics for the classification of glioma grades
por: Kobayashi, Kazuma, et al.
Publicado: (2021) -
Correction: Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multiple Modalities of Magnetic Resonance Imaging
por: Hu, Jisu, et al.
Publicado: (2016) -
Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas
por: Liu, Zhen, et al.
Publicado: (2023)