Cargando…
Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
We show how complexity theory can be introduced in machine learning to help bring together apparently disparate areas of current research. We show that this model-driven approach may require less training data and can potentially be more generalizable as it shows greater resilience to random attacks...
Autores principales: | Hernández-Orozco, Santiago, Zenil, Hector, Riedel, Jürgen, Uccello, Adam, Kiani, Narsis A., Tegnér, Jesper |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944352/ https://www.ncbi.nlm.nih.gov/pubmed/33733213 http://dx.doi.org/10.3389/frai.2020.567356 |
Ejemplares similares
-
Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity
por: Hernández-Orozco, Santiago, et al.
Publicado: (2018) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Symmetry and Correspondence of Algorithmic Complexity over Geometric, Spatial and Topological Representations †
por: Zenil, Hector, et al.
Publicado: (2018) -
A Review of Graph and Network Complexity from an Algorithmic Information Perspective
por: Zenil, Hector, et al.
Publicado: (2018) -
A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity
por: Zenil, Hector, et al.
Publicado: (2018)