Cargando…
High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
[Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental ste...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944479/ https://www.ncbi.nlm.nih.gov/pubmed/33596381 http://dx.doi.org/10.1021/acs.analchem.0c03185 |
_version_ | 1783662685672439808 |
---|---|
author | Dong, Liang Huang, Chung-Ying Johnson, Eric J. Yang, Lei Zieren, Richard C. Horie, Kengo Kim, Chi-Ju Warren, Sarah Amend, Sarah R. Xue, Wei Pienta, Kenneth J. |
author_facet | Dong, Liang Huang, Chung-Ying Johnson, Eric J. Yang, Lei Zieren, Richard C. Horie, Kengo Kim, Chi-Ju Warren, Sarah Amend, Sarah R. Xue, Wei Pienta, Kenneth J. |
author_sort | Dong, Liang |
collection | PubMed |
description | [Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental steps toward understanding the role of EVs in intercellular communication and the discovery of new biomarkers. One of the unmet needs in this field is the lack of a robust, sensitive, and multiplexed method for EV mRNA profiling. We established a new protocol using the NanoString low RNA input nCounter assay by which the targeted mRNA transcripts in EVs can be efficiently and specifically amplified and then assayed for 770 mRNAs in one reaction. Prostate cancer cells with epithelial (PC3-Epi) or mesenchymal (PC3-EMT) phenotypes and their progeny EVs were analyzed by the same panel. Among these mRNAs, 157 were detected in PC3-Epi EVs and 564 were detected in PC3-EMT EVs. NOTCH1 was the most significantly abundant mRNA transcripts in PC3-EMT EVs compared to PC3-Epi EVs. Our results demonstrated that when cells undergo epithelial-to-mesenchymal transition (EMT), a more active loading of cancer progression-related mRNA transcripts may occur. The mRNA cargos of EVs derived from mesenchymal prostate cancer cells may contribute to the pro-EMT function. We found that mRNA transcripts are different in progeny EVs compared to parental cells. EV cargos are not completely reflective of their cell origin, and the underlying mechanism of cargo sorting is complicated and needs to be further elucidated. |
format | Online Article Text |
id | pubmed-7944479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79444792021-03-11 High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells Dong, Liang Huang, Chung-Ying Johnson, Eric J. Yang, Lei Zieren, Richard C. Horie, Kengo Kim, Chi-Ju Warren, Sarah Amend, Sarah R. Xue, Wei Pienta, Kenneth J. Anal Chem [Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental steps toward understanding the role of EVs in intercellular communication and the discovery of new biomarkers. One of the unmet needs in this field is the lack of a robust, sensitive, and multiplexed method for EV mRNA profiling. We established a new protocol using the NanoString low RNA input nCounter assay by which the targeted mRNA transcripts in EVs can be efficiently and specifically amplified and then assayed for 770 mRNAs in one reaction. Prostate cancer cells with epithelial (PC3-Epi) or mesenchymal (PC3-EMT) phenotypes and their progeny EVs were analyzed by the same panel. Among these mRNAs, 157 were detected in PC3-Epi EVs and 564 were detected in PC3-EMT EVs. NOTCH1 was the most significantly abundant mRNA transcripts in PC3-EMT EVs compared to PC3-Epi EVs. Our results demonstrated that when cells undergo epithelial-to-mesenchymal transition (EMT), a more active loading of cancer progression-related mRNA transcripts may occur. The mRNA cargos of EVs derived from mesenchymal prostate cancer cells may contribute to the pro-EMT function. We found that mRNA transcripts are different in progeny EVs compared to parental cells. EV cargos are not completely reflective of their cell origin, and the underlying mechanism of cargo sorting is complicated and needs to be further elucidated. American Chemical Society 2021-02-17 2021-03-02 /pmc/articles/PMC7944479/ /pubmed/33596381 http://dx.doi.org/10.1021/acs.analchem.0c03185 Text en © 2021 American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Dong, Liang Huang, Chung-Ying Johnson, Eric J. Yang, Lei Zieren, Richard C. Horie, Kengo Kim, Chi-Ju Warren, Sarah Amend, Sarah R. Xue, Wei Pienta, Kenneth J. High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title | High-Throughput Simultaneous mRNA Profiling Using
nCounter Technology Demonstrates That Extracellular Vesicles Contain
Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title_full | High-Throughput Simultaneous mRNA Profiling Using
nCounter Technology Demonstrates That Extracellular Vesicles Contain
Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title_fullStr | High-Throughput Simultaneous mRNA Profiling Using
nCounter Technology Demonstrates That Extracellular Vesicles Contain
Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title_full_unstemmed | High-Throughput Simultaneous mRNA Profiling Using
nCounter Technology Demonstrates That Extracellular Vesicles Contain
Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title_short | High-Throughput Simultaneous mRNA Profiling Using
nCounter Technology Demonstrates That Extracellular Vesicles Contain
Different mRNA Transcripts Than Their Parental Prostate Cancer Cells |
title_sort | high-throughput simultaneous mrna profiling using
ncounter technology demonstrates that extracellular vesicles contain
different mrna transcripts than their parental prostate cancer cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944479/ https://www.ncbi.nlm.nih.gov/pubmed/33596381 http://dx.doi.org/10.1021/acs.analchem.0c03185 |
work_keys_str_mv | AT dongliang highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT huangchungying highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT johnsonericj highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT yanglei highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT zierenrichardc highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT horiekengo highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT kimchiju highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT warrensarah highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT amendsarahr highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT xuewei highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells AT pientakennethj highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells |