Cargando…

High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells

[Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental ste...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Liang, Huang, Chung-Ying, Johnson, Eric J., Yang, Lei, Zieren, Richard C., Horie, Kengo, Kim, Chi-Ju, Warren, Sarah, Amend, Sarah R., Xue, Wei, Pienta, Kenneth J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944479/
https://www.ncbi.nlm.nih.gov/pubmed/33596381
http://dx.doi.org/10.1021/acs.analchem.0c03185
_version_ 1783662685672439808
author Dong, Liang
Huang, Chung-Ying
Johnson, Eric J.
Yang, Lei
Zieren, Richard C.
Horie, Kengo
Kim, Chi-Ju
Warren, Sarah
Amend, Sarah R.
Xue, Wei
Pienta, Kenneth J.
author_facet Dong, Liang
Huang, Chung-Ying
Johnson, Eric J.
Yang, Lei
Zieren, Richard C.
Horie, Kengo
Kim, Chi-Ju
Warren, Sarah
Amend, Sarah R.
Xue, Wei
Pienta, Kenneth J.
author_sort Dong, Liang
collection PubMed
description [Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental steps toward understanding the role of EVs in intercellular communication and the discovery of new biomarkers. One of the unmet needs in this field is the lack of a robust, sensitive, and multiplexed method for EV mRNA profiling. We established a new protocol using the NanoString low RNA input nCounter assay by which the targeted mRNA transcripts in EVs can be efficiently and specifically amplified and then assayed for 770 mRNAs in one reaction. Prostate cancer cells with epithelial (PC3-Epi) or mesenchymal (PC3-EMT) phenotypes and their progeny EVs were analyzed by the same panel. Among these mRNAs, 157 were detected in PC3-Epi EVs and 564 were detected in PC3-EMT EVs. NOTCH1 was the most significantly abundant mRNA transcripts in PC3-EMT EVs compared to PC3-Epi EVs. Our results demonstrated that when cells undergo epithelial-to-mesenchymal transition (EMT), a more active loading of cancer progression-related mRNA transcripts may occur. The mRNA cargos of EVs derived from mesenchymal prostate cancer cells may contribute to the pro-EMT function. We found that mRNA transcripts are different in progeny EVs compared to parental cells. EV cargos are not completely reflective of their cell origin, and the underlying mechanism of cargo sorting is complicated and needs to be further elucidated.
format Online
Article
Text
id pubmed-7944479
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79444792021-03-11 High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells Dong, Liang Huang, Chung-Ying Johnson, Eric J. Yang, Lei Zieren, Richard C. Horie, Kengo Kim, Chi-Ju Warren, Sarah Amend, Sarah R. Xue, Wei Pienta, Kenneth J. Anal Chem [Image: see text] Extracellular vesicles (EVs) are nano-sized lipid bilayer encapsulated particles with a molecular cargo that appears to play important roles within the human body, such as in cell-to-cell communication. Unraveling the composition of EV cargos remains one of the most fundamental steps toward understanding the role of EVs in intercellular communication and the discovery of new biomarkers. One of the unmet needs in this field is the lack of a robust, sensitive, and multiplexed method for EV mRNA profiling. We established a new protocol using the NanoString low RNA input nCounter assay by which the targeted mRNA transcripts in EVs can be efficiently and specifically amplified and then assayed for 770 mRNAs in one reaction. Prostate cancer cells with epithelial (PC3-Epi) or mesenchymal (PC3-EMT) phenotypes and their progeny EVs were analyzed by the same panel. Among these mRNAs, 157 were detected in PC3-Epi EVs and 564 were detected in PC3-EMT EVs. NOTCH1 was the most significantly abundant mRNA transcripts in PC3-EMT EVs compared to PC3-Epi EVs. Our results demonstrated that when cells undergo epithelial-to-mesenchymal transition (EMT), a more active loading of cancer progression-related mRNA transcripts may occur. The mRNA cargos of EVs derived from mesenchymal prostate cancer cells may contribute to the pro-EMT function. We found that mRNA transcripts are different in progeny EVs compared to parental cells. EV cargos are not completely reflective of their cell origin, and the underlying mechanism of cargo sorting is complicated and needs to be further elucidated. American Chemical Society 2021-02-17 2021-03-02 /pmc/articles/PMC7944479/ /pubmed/33596381 http://dx.doi.org/10.1021/acs.analchem.0c03185 Text en © 2021 American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Dong, Liang
Huang, Chung-Ying
Johnson, Eric J.
Yang, Lei
Zieren, Richard C.
Horie, Kengo
Kim, Chi-Ju
Warren, Sarah
Amend, Sarah R.
Xue, Wei
Pienta, Kenneth J.
High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title_full High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title_fullStr High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title_full_unstemmed High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title_short High-Throughput Simultaneous mRNA Profiling Using nCounter Technology Demonstrates That Extracellular Vesicles Contain Different mRNA Transcripts Than Their Parental Prostate Cancer Cells
title_sort high-throughput simultaneous mrna profiling using ncounter technology demonstrates that extracellular vesicles contain different mrna transcripts than their parental prostate cancer cells
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944479/
https://www.ncbi.nlm.nih.gov/pubmed/33596381
http://dx.doi.org/10.1021/acs.analchem.0c03185
work_keys_str_mv AT dongliang highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT huangchungying highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT johnsonericj highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT yanglei highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT zierenrichardc highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT horiekengo highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT kimchiju highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT warrensarah highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT amendsarahr highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT xuewei highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells
AT pientakennethj highthroughputsimultaneousmrnaprofilingusingncountertechnologydemonstratesthatextracellularvesiclescontaindifferentmrnatranscriptsthantheirparentalprostatecancercells