Cargando…
Validation and demonstration of a pericarp disc system for studying blossom-end rot of tomatoes
BACKGROUND: Blossom-end rot in tomatoes is often used as a model system to study fruit calcium deficiency. The study of blossom-end rot development in tomatoes has been greatly impeded by the difficulty of directly studying and applying treatments to the affected cells. This manuscript presents a no...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944904/ https://www.ncbi.nlm.nih.gov/pubmed/33691714 http://dx.doi.org/10.1186/s13007-021-00728-3 |
Sumario: | BACKGROUND: Blossom-end rot in tomatoes is often used as a model system to study fruit calcium deficiency. The study of blossom-end rot development in tomatoes has been greatly impeded by the difficulty of directly studying and applying treatments to the affected cells. This manuscript presents a novel method for studying blossom-end rot development after harvest in immature whole fruit and in pericarp discs. RESULTS: Pericarp discs removed from the bottom pericarp of immature healthy fruit developed blossom-end rot like symptoms, corresponding to a decrease in L* value and an increase in a* value. Symptoms also developed in columella tissue, but not in stem-end pericarp tissue, similar to patterns observed during blossom-end rot development on the plant. Ascorbate oxidase and peroxidase activity, which are elevated in blossom-end rot affected fruit compared to healthy fruit, were both correlated with colorimetric measures of tissue darkening in discs. Respiration rate was higher in discs that later developed blossom-end rot symptoms, with increased respiration in asymptomatic discs on day 1 of storage being associated with symptom development on day 2. Calcium chloride and ascorbic acid treatments inhibited symptom development, demonstrating the potential of this method to provide causal evidence. CONCLUSIONS: Results indicate that symptom development in this system is consistent with blossom-end rot development with regards to location, color change, and the activity of key enzymes. This system has the potential to be used to elucidate the cause of fruit calcium deficiency and improve knowledge of the biological basis for calcium’s diverse effects on fruit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13007-021-00728-3. |
---|