Cargando…
Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy
BACKGROUND: Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune res...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944996/ https://www.ncbi.nlm.nih.gov/pubmed/33688020 http://dx.doi.org/10.1136/jitc-2020-001764 |
_version_ | 1783662780647211008 |
---|---|
author | Olivo Pimentel, Veronica Marcus, Damiënne van der Wiel, Alexander MA Lieuwes, Natasja G Biemans, Rianne Lieverse, Relinde IY Neri, Dario Theys, Jan Yaromina, Ala Dubois, Ludwig J Lambin, Philippe |
author_facet | Olivo Pimentel, Veronica Marcus, Damiënne van der Wiel, Alexander MA Lieuwes, Natasja G Biemans, Rianne Lieverse, Relinde IY Neri, Dario Theys, Jan Yaromina, Ala Dubois, Ludwig J Lambin, Philippe |
author_sort | Olivo Pimentel, Veronica |
collection | PubMed |
description | BACKGROUND: Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune responsive. We have previously shown that the immunocytokine L19–IL2 combined with single-dose RT resulted in 75% tumor remission and a 20% curative abscopal effect in the T cell-inflamed C51 colon carcinoma model. This treatment schedule was associated with the upregulation of inhibitory immune checkpoint (IC) molecules on tumor-infiltrating T cells, leading to only tumor growth delay in the poorly immunogenic Lewis lung carcinoma (LLC) model. METHODS: We aimed to trigger curative therapeutic responses in three tumor models (LLC, C51 and CT26) by “pushing the accelerator” of tumor immunity with L19–IL2 and/or “releasing the brakes” with ICB, such as antibodies directed against cytotoxic T lymphocyte associated protein 4 (CTLA-4), programmed death 1 (PD-1) or its ligand (PD-L1), combined with single-dose RT (10 Gy or 5 Gy). Primary tumor endpoint was defined as time to reach four times the size of tumor volume at start of treatment (4T×SV). Multivariate analysis of 4T×SV was performed using the Cox proportional hazards model comparing each treatment group with controls. Causal involvement of T and natural killer (NK) cells in the anti-tumor effect was assessed by in vivo depletion of T, NK or both cell populations. Immune profiling was performed using flow cytometry on single cell suspensions from spleens, bone marrow, tumors and blood. RESULTS: Combining RT, anti-PD-L1 and L19–IL2 cured 38% of LLC tumors, which was both CD8(+) T and NK cell dependent. LLC tumors were resistant to RT +anti-PD-L1 likely explained by the upregulation of other IC molecules and increased T regulatory cell tumor infiltration. RT+L19–IL2 outperformed RT+ICB in C51 tumors; effects were comparable in CT26 tumors. Triple combinations were not superior to RT+L19–IL2 in both these models. CONCLUSIONS: This study demonstrated that combinatorial strategies rationally designed on biological effects can turn immunotherapy-resistant tumors into immunologically responsive tumors. This hypothesis is currently being tested in the international multicentric randomized phase 2 trial: ImmunoSABR (NCT03705403). |
format | Online Article Text |
id | pubmed-7944996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BMJ Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-79449962021-03-24 Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy Olivo Pimentel, Veronica Marcus, Damiënne van der Wiel, Alexander MA Lieuwes, Natasja G Biemans, Rianne Lieverse, Relinde IY Neri, Dario Theys, Jan Yaromina, Ala Dubois, Ludwig J Lambin, Philippe J Immunother Cancer Clinical/Translational Cancer Immunotherapy BACKGROUND: Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune responsive. We have previously shown that the immunocytokine L19–IL2 combined with single-dose RT resulted in 75% tumor remission and a 20% curative abscopal effect in the T cell-inflamed C51 colon carcinoma model. This treatment schedule was associated with the upregulation of inhibitory immune checkpoint (IC) molecules on tumor-infiltrating T cells, leading to only tumor growth delay in the poorly immunogenic Lewis lung carcinoma (LLC) model. METHODS: We aimed to trigger curative therapeutic responses in three tumor models (LLC, C51 and CT26) by “pushing the accelerator” of tumor immunity with L19–IL2 and/or “releasing the brakes” with ICB, such as antibodies directed against cytotoxic T lymphocyte associated protein 4 (CTLA-4), programmed death 1 (PD-1) or its ligand (PD-L1), combined with single-dose RT (10 Gy or 5 Gy). Primary tumor endpoint was defined as time to reach four times the size of tumor volume at start of treatment (4T×SV). Multivariate analysis of 4T×SV was performed using the Cox proportional hazards model comparing each treatment group with controls. Causal involvement of T and natural killer (NK) cells in the anti-tumor effect was assessed by in vivo depletion of T, NK or both cell populations. Immune profiling was performed using flow cytometry on single cell suspensions from spleens, bone marrow, tumors and blood. RESULTS: Combining RT, anti-PD-L1 and L19–IL2 cured 38% of LLC tumors, which was both CD8(+) T and NK cell dependent. LLC tumors were resistant to RT +anti-PD-L1 likely explained by the upregulation of other IC molecules and increased T regulatory cell tumor infiltration. RT+L19–IL2 outperformed RT+ICB in C51 tumors; effects were comparable in CT26 tumors. Triple combinations were not superior to RT+L19–IL2 in both these models. CONCLUSIONS: This study demonstrated that combinatorial strategies rationally designed on biological effects can turn immunotherapy-resistant tumors into immunologically responsive tumors. This hypothesis is currently being tested in the international multicentric randomized phase 2 trial: ImmunoSABR (NCT03705403). BMJ Publishing Group 2021-03-09 /pmc/articles/PMC7944996/ /pubmed/33688020 http://dx.doi.org/10.1136/jitc-2020-001764 Text en © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See https://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Clinical/Translational Cancer Immunotherapy Olivo Pimentel, Veronica Marcus, Damiënne van der Wiel, Alexander MA Lieuwes, Natasja G Biemans, Rianne Lieverse, Relinde IY Neri, Dario Theys, Jan Yaromina, Ala Dubois, Ludwig J Lambin, Philippe Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title | Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title_full | Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title_fullStr | Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title_full_unstemmed | Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title_short | Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19–IL2 cures poorly immunogenic tumors when combined with radiotherapy |
title_sort | releasing the brakes of tumor immunity with anti-pd-l1 and pushing its accelerator with l19–il2 cures poorly immunogenic tumors when combined with radiotherapy |
topic | Clinical/Translational Cancer Immunotherapy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944996/ https://www.ncbi.nlm.nih.gov/pubmed/33688020 http://dx.doi.org/10.1136/jitc-2020-001764 |
work_keys_str_mv | AT olivopimentelveronica releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT marcusdamienne releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT vanderwielalexanderma releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT lieuwesnatasjag releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT biemansrianne releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT lieverserelindeiy releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT neridario releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT theysjan releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT yarominaala releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT duboisludwigj releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy AT lambinphilippe releasingthebrakesoftumorimmunitywithantipdl1andpushingitsacceleratorwithl19il2curespoorlyimmunogenictumorswhencombinedwithradiotherapy |