Cargando…
PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
AIM: COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment. METHODS: In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary tuberculosis, community-captured pneumonia, and health...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945676/ https://www.ncbi.nlm.nih.gov/pubmed/33777167 http://dx.doi.org/10.1155/2021/6633755 |
Sumario: | AIM: COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment. METHODS: In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary tuberculosis, community-captured pneumonia, and healthy subjects. PSSPNN entails five improvements: we first proposed the n-conv stochastic pooling module. Second, a novel stochastic pooling neural network was proposed. Third, PatchShuffle was introduced as a regularization term. Fourth, an improved multiple-way data augmentation was used. Fifth, Grad-CAM was utilized to interpret our AI model. RESULTS: The 10 runs with random seed on the test set showed our algorithm achieved a microaveraged F1 score of 95.79%. Moreover, our method is better than nine state-of-the-art approaches. CONCLUSION: This proposed PSSPNN will help assist radiologists to make diagnosis more quickly and accurately on COVID-19 cases. |
---|