Cargando…
PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
AIM: COVID-19 has caused large death tolls all over the world. Accurate diagnosis is of significant importance for early treatment. METHODS: In this study, we proposed a novel PSSPNN model for classification between COVID-19, secondary pulmonary tuberculosis, community-captured pneumonia, and health...
Autores principales: | Wang, Shui-Hua, Zhang, Yin, Cheng, Xiaochun, Zhang, Xin, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945676/ https://www.ncbi.nlm.nih.gov/pubmed/33777167 http://dx.doi.org/10.1155/2021/6633755 |
Ejemplares similares
-
Retracted: PSSPNN: PatchShuffle Stochastic Pooling Neural Network for an Explainable Diagnosis of COVID-19 with Multiple-Way Data Augmentation
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
PSCNN: PatchShuffle Convolutional Neural Network for COVID-19 Explainable Diagnosis
por: Wang, Shui-Hua, et al.
Publicado: (2021) -
Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation
por: Abdani, Siti Raihanah, et al.
Publicado: (2021) -
Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling
por: Wang, Shui-Hua, et al.
Publicado: (2018) -
Residual-Shuffle Network with Spatial Pyramid Pooling Module for COVID-19 Screening
por: Zulkifley, Mohd Asyraf, et al.
Publicado: (2021)