Cargando…
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study
BACKGROUND: Women who undergo chronic exposure to excessive estrogen are at a high risk of developing breast cancer. TOX3 has been reported to be highly expressed in breast tumors and is closely related to estrogen receptors. However, the effect of TOX3 on estrogen synthesis remains poorly understoo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945945/ https://www.ncbi.nlm.nih.gov/pubmed/33716953 http://dx.doi.org/10.3389/fendo.2020.615846 |
_version_ | 1783662960766353408 |
---|---|
author | Man, Yuanyuan Zhao, Rusong Gao, Xueying Liu, Yue Zhao, Shigang Lu, Gang Chan, Wai-Yee Leung, Peter C. K. Bian, Yuehong |
author_facet | Man, Yuanyuan Zhao, Rusong Gao, Xueying Liu, Yue Zhao, Shigang Lu, Gang Chan, Wai-Yee Leung, Peter C. K. Bian, Yuehong |
author_sort | Man, Yuanyuan |
collection | PubMed |
description | BACKGROUND: Women who undergo chronic exposure to excessive estrogen are at a high risk of developing breast cancer. TOX3 has been reported to be highly expressed in breast tumors and is closely related to estrogen receptors. However, the effect of TOX3 on estrogen synthesis remains poorly understood. METHODS: Using lentiviruses as a vector, we stably overexpressed TOX3 in the ovarian granulosa cell line KGN, the cells where estradiol is primarily produced, to investigate its role in estrogen production as well as cell viability and apoptosis. RNA-Sequencing was applied to uncover the global gene expression upon TOX3 overexpression. RESULTS: We observed an increased level of cell viability and a reduced cell apoptosis rate after TOX3 overexpression, and the level of estradiol in the cell culture supernatant also increased significantly. Gene set enrichment analysis of the transcriptome showed that the ovarian steroidogenesis pathway was significantly enriched. Similarly, pathway mapping using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses also showed that TOX3 overexpression affects the ovarian steroidogenesis pathway. Further experiments showed that upregulated FSHR, CYP19A1, and BMP6 accounted for the enhanced estrogen synthesis. CONCLUSION: Our study demonstrated that TOX3 quantitatively and qualitatively stimulates estrogen synthesis by enhancing estrogen signaling pathway–related gene expression in ovarian granulosa cells. These findings suggest that TOX3 may play a vital role in the pathogenesis of breast cancer. |
format | Online Article Text |
id | pubmed-7945945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79459452021-03-11 TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study Man, Yuanyuan Zhao, Rusong Gao, Xueying Liu, Yue Zhao, Shigang Lu, Gang Chan, Wai-Yee Leung, Peter C. K. Bian, Yuehong Front Endocrinol (Lausanne) Endocrinology BACKGROUND: Women who undergo chronic exposure to excessive estrogen are at a high risk of developing breast cancer. TOX3 has been reported to be highly expressed in breast tumors and is closely related to estrogen receptors. However, the effect of TOX3 on estrogen synthesis remains poorly understood. METHODS: Using lentiviruses as a vector, we stably overexpressed TOX3 in the ovarian granulosa cell line KGN, the cells where estradiol is primarily produced, to investigate its role in estrogen production as well as cell viability and apoptosis. RNA-Sequencing was applied to uncover the global gene expression upon TOX3 overexpression. RESULTS: We observed an increased level of cell viability and a reduced cell apoptosis rate after TOX3 overexpression, and the level of estradiol in the cell culture supernatant also increased significantly. Gene set enrichment analysis of the transcriptome showed that the ovarian steroidogenesis pathway was significantly enriched. Similarly, pathway mapping using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses also showed that TOX3 overexpression affects the ovarian steroidogenesis pathway. Further experiments showed that upregulated FSHR, CYP19A1, and BMP6 accounted for the enhanced estrogen synthesis. CONCLUSION: Our study demonstrated that TOX3 quantitatively and qualitatively stimulates estrogen synthesis by enhancing estrogen signaling pathway–related gene expression in ovarian granulosa cells. These findings suggest that TOX3 may play a vital role in the pathogenesis of breast cancer. Frontiers Media S.A. 2021-02-24 /pmc/articles/PMC7945945/ /pubmed/33716953 http://dx.doi.org/10.3389/fendo.2020.615846 Text en Copyright © 2021 Man, Zhao, Gao, Liu, Zhao, Lu, Chan, Leung and Bian http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Man, Yuanyuan Zhao, Rusong Gao, Xueying Liu, Yue Zhao, Shigang Lu, Gang Chan, Wai-Yee Leung, Peter C. K. Bian, Yuehong TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title |
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title_full |
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title_fullStr |
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title_full_unstemmed |
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title_short |
TOX3 Promotes Ovarian Estrogen Synthesis: An RNA-Sequencing and Network Study |
title_sort | tox3 promotes ovarian estrogen synthesis: an rna-sequencing and network study |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945945/ https://www.ncbi.nlm.nih.gov/pubmed/33716953 http://dx.doi.org/10.3389/fendo.2020.615846 |
work_keys_str_mv | AT manyuanyuan tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT zhaorusong tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT gaoxueying tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT liuyue tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT zhaoshigang tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT lugang tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT chanwaiyee tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT leungpeterck tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy AT bianyuehong tox3promotesovarianestrogensynthesisanrnasequencingandnetworkstudy |