Cargando…
Generating functional protein variants with variational autoencoders
The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically me...
Autores principales: | Hawkins-Hooker, Alex, Depardieu, Florence, Baur, Sebastien, Couairon, Guillaume, Chen, Arthur, Bikard, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946179/ https://www.ncbi.nlm.nih.gov/pubmed/33635868 http://dx.doi.org/10.1371/journal.pcbi.1008736 |
Ejemplares similares
-
PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data
por: Garneau, Julian R., et al.
Publicado: (2017) -
Variational Autoencoder for Generation of Antimicrobial
Peptides
por: Dean, Scott N., et al.
Publicado: (2020) -
Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors
por: Rousset, François, et al.
Publicado: (2018) -
Generating tertiary protein structures via interpretable graph variational autoencoders
por: Guo, Xiaojie, et al.
Publicado: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
por: Tian, Hao, et al.
Publicado: (2021)