Cargando…
Using machine learning to improve risk prediction in durable left ventricular assist devices
Risk models have historically displayed only moderate predictive performance in estimating mortality risk in left ventricular assist device therapy. This study evaluated whether machine learning can improve risk prediction for left ventricular assist devices. Primary durable left ventricular assist...
Autores principales: | Kilic, Arman, Dochtermann, Daniel, Padman, Rema, Miller, James K., Dubrawski, Artur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946192/ https://www.ncbi.nlm.nih.gov/pubmed/33690687 http://dx.doi.org/10.1371/journal.pone.0247866 |
Ejemplares similares
-
Identifying Temporal Relationships Between In‐Hospital Adverse Events After Implantation of Durable Left Ventricular Assist Devices
por: Kilic, Arman, et al.
Publicado: (2020) -
Supplementing Existing Societal Risk Models for Surgical Aortic Valve Replacement With Machine Learning for Improved Prediction
por: Kilic, Arman, et al.
Publicado: (2021) -
Myocardial recovery following durable left ventricular assist device support
por: Rao, Vivek, et al.
Publicado: (2021) -
Pre-implant left ventricular dimension is not associated with worse outcomes after left ventricular assist device implantation
por: Srinivasan, Amudan J., et al.
Publicado: (2021) -
Commentary: Transcervical left ventricular assist device outflow anastomosis: A top-down approach to sparing the sternum
por: Blanding, Walker M., et al.
Publicado: (2021)