Cargando…
Engineered human meniscus’ matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions
Low oxygen and mechanical loading may play roles in regulating the fibrocartilaginous phenotype of the human inner meniscus, but their combination in engineered tissues remains unstudied. Here, we investigated how continuous low oxygen (“hypoxia”) combined with dynamic compression would affect the f...
Autores principales: | Szojka, Alexander R. A., Moore, Colleen N., Liang, Yan, Andrews, Stephen H. J., Kunze, Melanie, Mulet-Sierra, Aillette, Jomha, Nadr M., Adesida, Adetola B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946300/ https://www.ncbi.nlm.nih.gov/pubmed/33690647 http://dx.doi.org/10.1371/journal.pone.0248292 |
Ejemplares similares
-
Correction: Engineered human meniscus’ matrix-forming phenotype is unaffected by low strain dynamic compression under hypoxic conditions
por: Szojka, Alexander R. A., et al.
Publicado: (2021) -
Coculture of meniscus cells and mesenchymal stem cells in simulated microgravity
por: Weiss, William M., et al.
Publicado: (2017) -
Human engineered meniscus transcriptome after short-term combined hypoxia and dynamic compression
por: Szojka, Alexander RA, et al.
Publicado: (2021) -
Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells
por: Saliken, David JJ, et al.
Publicado: (2012) -
Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes
por: Adesida, Adetola B., et al.
Publicado: (2012)