Cargando…
C. elegans orthologs MUT-7/CeWRN-1 of Werner syndrome protein regulate neuronal plasticity
Caenorhabditis elegans expresses human Werner syndrome protein (WRN) orthologs as two distinct proteins: MUT-7, with a 3′−5′ exonuclease domain, and CeWRN-1, with helicase domains. How these domains cooperate remains unclear. Here, we demonstrate the different contributions of MUT-7 and CeWRN-1 to 2...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946423/ https://www.ncbi.nlm.nih.gov/pubmed/33646120 http://dx.doi.org/10.7554/eLife.62449 |
Sumario: | Caenorhabditis elegans expresses human Werner syndrome protein (WRN) orthologs as two distinct proteins: MUT-7, with a 3′−5′ exonuclease domain, and CeWRN-1, with helicase domains. How these domains cooperate remains unclear. Here, we demonstrate the different contributions of MUT-7 and CeWRN-1 to 22G small interfering RNA (siRNA) synthesis and the plasticity of neuronal signaling. MUT-7 acts specifically in the cytoplasm to promote siRNA biogenesis and in the nucleus to associate with CeWRN-1. The import of siRNA by the nuclear Argonaute NRDE-3 promotes the loading of the heterochromatin-binding protein HP1 homolog HPL-2 onto specific loci. This heterochromatin complex represses the gene expression of the guanylyl cyclase ODR-1 to direct olfactory plasticity in C. elegans. Our findings suggest that the exonuclease and helicase domains of human WRN may act in concert to promote RNA-dependent loading into a heterochromatin complex, and the failure of this entire process reduces plasticity in postmitotic neurons. |
---|