Cargando…
Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
Autism spectrum disorder (ASD) is a heterogeneous neuropsychiatric disorder with a complex genetic background. Analysis of altered molecular processes in ASD patients requires linear and nonlinear methods that provide interpretable solutions. Interpretable machine learning provides legible models th...
Autores principales: | Garbulowski, Mateusz, Smolinska, Karolina, Diamanti, Klev, Pan, Gang, Maqbool, Khurram, Feuk, Lars, Komorowski, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946989/ https://www.ncbi.nlm.nih.gov/pubmed/33719335 http://dx.doi.org/10.3389/fgene.2021.618277 |
Ejemplares similares
-
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Machine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment
por: Garbulowski, Mateusz, et al.
Publicado: (2022) -
Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
por: Yones, Sara A., et al.
Publicado: (2022) -
MetaFetcheR: An R Package for Complete Mapping of Small-Compound Data
por: Yones, Sara A., et al.
Publicado: (2021) -
Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster
por: Bi, Xia-an, et al.
Publicado: (2018)