Cargando…
Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models
Many regions in Iran are currently experience water crisis, largely driven by frequent droughts and expanding agricultural land combined with over abstraction of groundwater. Therefore, it is extremely important to identify potential groundwater recharge (GWR) zones to help in prevent water scarcity...
Autores principales: | Jaafarzadeh, Maryam Sadat, Tahmasebipour, Naser, Haghizadeh, Ali, Pourghasemi, Hamid Reza, Rouhani, Hamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947010/ https://www.ncbi.nlm.nih.gov/pubmed/33692534 http://dx.doi.org/10.1038/s41598-021-85205-6 |
Ejemplares similares
-
Decline in Iran’s groundwater recharge
por: Noori, Roohollah, et al.
Publicado: (2023) -
Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques
por: Bordbar, Mojgan, et al.
Publicado: (2022) -
Pathogen Removal from Wastewater during Groundwater Recharge
por: Gerba, Charles P., et al.
Publicado: (1985) -
An Analysis on Groundwater Recharge by Mathematical Model in Inclined Porous Media
por: Pathak, Shreekant P., et al.
Publicado: (2014) -
Quasi‐Saturated Layer: Implications for Estimating Recharge and Groundwater Modeling
por: Gonçalves, Roger D., et al.
Publicado: (2019)