Cargando…
Artificial intelligence-aided CT segmentation for body composition analysis: a validation study
BACKGROUND: Body composition is associated with survival outcome in oncological patients, but it is not routinely calculated. Manual segmentation of subcutaneous adipose tissue (SAT) and muscle is time-consuming and therefore limited to a single CT slice. Our goal was to develop an artificial-intell...
Autores principales: | Borrelli, Pablo, Kaboteh, Reza, Enqvist, Olof, Ulén, Johannes, Trägårdh, Elin, Kjölhede, Henrik, Edenbrandt, Lars |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947128/ https://www.ncbi.nlm.nih.gov/pubmed/33694046 http://dx.doi.org/10.1186/s41747-021-00210-8 |
Ejemplares similares
-
Automated artificial intelligence-based analysis of skeletal muscle volume predicts overall survival after cystectomy for urinary bladder cancer
por: Ying, Thomas, et al.
Publicado: (2021) -
RECOMIA—a cloud-based platform for artificial intelligence research in nuclear medicine and radiology
por: Trägårdh, Elin, et al.
Publicado: (2020) -
AI-based detection of lung lesions in [(18)F]FDG PET-CT from lung cancer patients
por: Borrelli, Pablo, et al.
Publicado: (2021) -
Freely available convolutional neural network-based quantification of PET/CT lesions is associated with survival in patients with lung cancer
por: Borrelli, Pablo, et al.
Publicado: (2022) -
Freely available artificial intelligence for pelvic lymph node metastases in PSMA PET-CT that performs on par with nuclear medicine physicians
por: Trägårdh, Elin, et al.
Publicado: (2022)