Cargando…
A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. Howeve...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947246/ https://www.ncbi.nlm.nih.gov/pubmed/33716788 http://dx.doi.org/10.3389/fphys.2021.641066 |
_version_ | 1783663182448951296 |
---|---|
author | Zheng, Jianwei Fu, Guohua Abudayyeh, Islam Yacoub, Magdi Chang, Anthony Feaster, William W. Ehwerhemuepha, Louis El-Askary, Hesham Du, Xianfeng He, Bin Feng, Mingjun Yu, Yibo Wang, Binhao Liu, Jing Yao, Hai Chu, Huimin Rakovski, Cyril |
author_facet | Zheng, Jianwei Fu, Guohua Abudayyeh, Islam Yacoub, Magdi Chang, Anthony Feaster, William W. Ehwerhemuepha, Louis El-Askary, Hesham Du, Xianfeng He, Bin Feng, Mingjun Yu, Yibo Wang, Binhao Liu, Jing Yao, Hai Chu, Huimin Rakovski, Cyril |
author_sort | Zheng, Jianwei |
collection | PubMed |
description | INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. METHODS: We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. RESULTS: The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100). CONCLUSIONS: The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. |
format | Online Article Text |
id | pubmed-7947246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79472462021-03-12 A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia Zheng, Jianwei Fu, Guohua Abudayyeh, Islam Yacoub, Magdi Chang, Anthony Feaster, William W. Ehwerhemuepha, Louis El-Askary, Hesham Du, Xianfeng He, Bin Feng, Mingjun Yu, Yibo Wang, Binhao Liu, Jing Yao, Hai Chu, Huimin Rakovski, Cyril Front Physiol Physiology INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. METHODS: We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. RESULTS: The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100). CONCLUSIONS: The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. Frontiers Media S.A. 2021-02-25 /pmc/articles/PMC7947246/ /pubmed/33716788 http://dx.doi.org/10.3389/fphys.2021.641066 Text en Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Zheng, Jianwei Fu, Guohua Abudayyeh, Islam Yacoub, Magdi Chang, Anthony Feaster, William W. Ehwerhemuepha, Louis El-Askary, Hesham Du, Xianfeng He, Bin Feng, Mingjun Yu, Yibo Wang, Binhao Liu, Jing Yao, Hai Chu, Huimin Rakovski, Cyril A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title_full | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title_fullStr | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title_full_unstemmed | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title_short | A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia |
title_sort | high-precision machine learning algorithm to classify left and right outflow tract ventricular tachycardia |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947246/ https://www.ncbi.nlm.nih.gov/pubmed/33716788 http://dx.doi.org/10.3389/fphys.2021.641066 |
work_keys_str_mv | AT zhengjianwei ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT fuguohua ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT abudayyehislam ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yacoubmagdi ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT changanthony ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT feasterwilliamw ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT ehwerhemuephalouis ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT elaskaryhesham ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT duxianfeng ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT hebin ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT fengmingjun ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yuyibo ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT wangbinhao ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT liujing ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yaohai ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT chuhuimin ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT rakovskicyril ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT zhengjianwei highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT fuguohua highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT abudayyehislam highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yacoubmagdi highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT changanthony highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT feasterwilliamw highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT ehwerhemuephalouis highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT elaskaryhesham highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT duxianfeng highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT hebin highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT fengmingjun highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yuyibo highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT wangbinhao highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT liujing highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT yaohai highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT chuhuimin highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia AT rakovskicyril highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia |