Cargando…

A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia

INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Jianwei, Fu, Guohua, Abudayyeh, Islam, Yacoub, Magdi, Chang, Anthony, Feaster, William W., Ehwerhemuepha, Louis, El-Askary, Hesham, Du, Xianfeng, He, Bin, Feng, Mingjun, Yu, Yibo, Wang, Binhao, Liu, Jing, Yao, Hai, Chu, Huimin, Rakovski, Cyril
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947246/
https://www.ncbi.nlm.nih.gov/pubmed/33716788
http://dx.doi.org/10.3389/fphys.2021.641066
_version_ 1783663182448951296
author Zheng, Jianwei
Fu, Guohua
Abudayyeh, Islam
Yacoub, Magdi
Chang, Anthony
Feaster, William W.
Ehwerhemuepha, Louis
El-Askary, Hesham
Du, Xianfeng
He, Bin
Feng, Mingjun
Yu, Yibo
Wang, Binhao
Liu, Jing
Yao, Hai
Chu, Huimin
Rakovski, Cyril
author_facet Zheng, Jianwei
Fu, Guohua
Abudayyeh, Islam
Yacoub, Magdi
Chang, Anthony
Feaster, William W.
Ehwerhemuepha, Louis
El-Askary, Hesham
Du, Xianfeng
He, Bin
Feng, Mingjun
Yu, Yibo
Wang, Binhao
Liu, Jing
Yao, Hai
Chu, Huimin
Rakovski, Cyril
author_sort Zheng, Jianwei
collection PubMed
description INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. METHODS: We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. RESULTS: The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100). CONCLUSIONS: The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies.
format Online
Article
Text
id pubmed-7947246
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79472462021-03-12 A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia Zheng, Jianwei Fu, Guohua Abudayyeh, Islam Yacoub, Magdi Chang, Anthony Feaster, William W. Ehwerhemuepha, Louis El-Askary, Hesham Du, Xianfeng He, Bin Feng, Mingjun Yu, Yibo Wang, Binhao Liu, Jing Yao, Hai Chu, Huimin Rakovski, Cyril Front Physiol Physiology INTRODUCTION: Multiple algorithms based on 12-lead ECG measurements have been proposed to identify the right ventricular outflow tract (RVOT) and left ventricular outflow tract (LVOT) locations from which ventricular tachycardia (VT) and frequent premature ventricular complex (PVC) originate. However, a clinical-grade machine learning algorithm that automatically analyzes characteristics of 12-lead ECGs and predicts RVOT or LVOT origins of VT and PVC is not currently available. The effective ablation sites of RVOT and LVOT, confirmed by a successful ablation procedure, provide evidence to create RVOT and LVOT labels for the machine learning model. METHODS: We randomly sampled training, validation, and testing data sets from 420 patients who underwent successful catheter ablation (CA) to treat VT or PVC, containing 340 (81%), 38 (9%), and 42 (10%) patients, respectively. We iteratively trained a machine learning algorithm supplied with 1,600,800 features extracted via our proprietary algorithm from 12-lead ECGs of the patients in the training cohort. The area under the curve (AUC) of the receiver operating characteristic curve was calculated from the internal validation data set to choose an optimal discretization cutoff threshold. RESULTS: The proposed approach attained the following performance: accuracy (ACC) of 97.62 (87.44–99.99), weighted F1-score of 98.46 (90–100), AUC of 98.99 (96.89–100), sensitivity (SE) of 96.97 (82.54–99.89), and specificity (SP) of 100 (62.97–100). CONCLUSIONS: The proposed multistage diagnostic scheme attained clinical-grade precision of prediction for LVOT and RVOT locations of VT origin with fewer applicability restrictions than prior studies. Frontiers Media S.A. 2021-02-25 /pmc/articles/PMC7947246/ /pubmed/33716788 http://dx.doi.org/10.3389/fphys.2021.641066 Text en Copyright © 2021 Zheng, Fu, Abudayyeh, Yacoub, Chang, Feaster, Ehwerhemuepha, El-Askary, Du, He, Feng, Yu, Wang, Liu, Yao, Chu and Rakovski. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Zheng, Jianwei
Fu, Guohua
Abudayyeh, Islam
Yacoub, Magdi
Chang, Anthony
Feaster, William W.
Ehwerhemuepha, Louis
El-Askary, Hesham
Du, Xianfeng
He, Bin
Feng, Mingjun
Yu, Yibo
Wang, Binhao
Liu, Jing
Yao, Hai
Chu, Huimin
Rakovski, Cyril
A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title_full A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title_fullStr A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title_full_unstemmed A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title_short A High-Precision Machine Learning Algorithm to Classify Left and Right Outflow Tract Ventricular Tachycardia
title_sort high-precision machine learning algorithm to classify left and right outflow tract ventricular tachycardia
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947246/
https://www.ncbi.nlm.nih.gov/pubmed/33716788
http://dx.doi.org/10.3389/fphys.2021.641066
work_keys_str_mv AT zhengjianwei ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT fuguohua ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT abudayyehislam ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yacoubmagdi ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT changanthony ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT feasterwilliamw ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT ehwerhemuephalouis ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT elaskaryhesham ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT duxianfeng ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT hebin ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT fengmingjun ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yuyibo ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT wangbinhao ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT liujing ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yaohai ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT chuhuimin ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT rakovskicyril ahighprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT zhengjianwei highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT fuguohua highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT abudayyehislam highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yacoubmagdi highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT changanthony highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT feasterwilliamw highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT ehwerhemuephalouis highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT elaskaryhesham highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT duxianfeng highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT hebin highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT fengmingjun highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yuyibo highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT wangbinhao highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT liujing highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT yaohai highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT chuhuimin highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia
AT rakovskicyril highprecisionmachinelearningalgorithmtoclassifyleftandrightoutflowtractventriculartachycardia