Cargando…
Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects millions of people worldwide. However, there are currently no reliable biomarkers for ASD diagnosis. Materials and Methods: The strategy of computational prediction combined with experimental verificatio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947305/ https://www.ncbi.nlm.nih.gov/pubmed/33716802 http://dx.doi.org/10.3389/fpsyt.2021.554621 |
_version_ | 1783663195998650368 |
---|---|
author | Yao, Fang Zhang, Kaoyuan Feng, Chengyun Gao, Yan Shen, Liming Liu, Xukun Ni, Jiazuan |
author_facet | Yao, Fang Zhang, Kaoyuan Feng, Chengyun Gao, Yan Shen, Liming Liu, Xukun Ni, Jiazuan |
author_sort | Yao, Fang |
collection | PubMed |
description | Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects millions of people worldwide. However, there are currently no reliable biomarkers for ASD diagnosis. Materials and Methods: The strategy of computational prediction combined with experimental verification was used to identify blood protein biomarkers for ASD. First, brain tissue–based transcriptome data of ASD were collected from Gene Expression Omnibus database and analyzed to find ASD-related genes by bioinformatics method of significance analysis of microarrays. Then, a prediction program of blood-secretory proteins was applied on these genes to predict ASD-related proteins in blood. Furthermore, ELISA was used to verify these proteins in plasma samples of ASD patients. Results: A total of 364 genes were identified differentially expressed in brain tissue of ASD, among which 59 genes were predicted to encode ASD-related blood-secretory proteins. After functional analysis and literature survey, six proteins were chosen for experimental verification and five were successfully validated. Receiver operating characteristic curve analyses showed that the area under the curve of SLC25A12, LIMK1, and RARS was larger than 0.85, indicating that they are more powerful in discriminating ASD cases from controls. Conclusion: SLC25A12, LIMK1, and RARS might serve as new potential blood protein biomarkers for ASD. Our findings provide new insights into the pathogenesis and diagnosis of ASD. |
format | Online Article Text |
id | pubmed-7947305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79473052021-03-12 Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods Yao, Fang Zhang, Kaoyuan Feng, Chengyun Gao, Yan Shen, Liming Liu, Xukun Ni, Jiazuan Front Psychiatry Psychiatry Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects millions of people worldwide. However, there are currently no reliable biomarkers for ASD diagnosis. Materials and Methods: The strategy of computational prediction combined with experimental verification was used to identify blood protein biomarkers for ASD. First, brain tissue–based transcriptome data of ASD were collected from Gene Expression Omnibus database and analyzed to find ASD-related genes by bioinformatics method of significance analysis of microarrays. Then, a prediction program of blood-secretory proteins was applied on these genes to predict ASD-related proteins in blood. Furthermore, ELISA was used to verify these proteins in plasma samples of ASD patients. Results: A total of 364 genes were identified differentially expressed in brain tissue of ASD, among which 59 genes were predicted to encode ASD-related blood-secretory proteins. After functional analysis and literature survey, six proteins were chosen for experimental verification and five were successfully validated. Receiver operating characteristic curve analyses showed that the area under the curve of SLC25A12, LIMK1, and RARS was larger than 0.85, indicating that they are more powerful in discriminating ASD cases from controls. Conclusion: SLC25A12, LIMK1, and RARS might serve as new potential blood protein biomarkers for ASD. Our findings provide new insights into the pathogenesis and diagnosis of ASD. Frontiers Media S.A. 2021-02-25 /pmc/articles/PMC7947305/ /pubmed/33716802 http://dx.doi.org/10.3389/fpsyt.2021.554621 Text en Copyright © 2021 Yao, Zhang, Feng, Gao, Shen, Liu and Ni. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychiatry Yao, Fang Zhang, Kaoyuan Feng, Chengyun Gao, Yan Shen, Liming Liu, Xukun Ni, Jiazuan Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title | Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title_full | Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title_fullStr | Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title_full_unstemmed | Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title_short | Protein Biomarkers of Autism Spectrum Disorder Identified by Computational and Experimental Methods |
title_sort | protein biomarkers of autism spectrum disorder identified by computational and experimental methods |
topic | Psychiatry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947305/ https://www.ncbi.nlm.nih.gov/pubmed/33716802 http://dx.doi.org/10.3389/fpsyt.2021.554621 |
work_keys_str_mv | AT yaofang proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT zhangkaoyuan proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT fengchengyun proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT gaoyan proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT shenliming proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT liuxukun proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods AT nijiazuan proteinbiomarkersofautismspectrumdisorderidentifiedbycomputationalandexperimentalmethods |