Cargando…
Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis
BACKGROUND: To develop a machine learning (ML)-assisted model capable of accurately identifying patients with calculous pyonephrosis before making treatment decisions by integrating multiple clinical characteristics. METHODS: We retrospectively collected data from patients with obstructed hydronephr...
Autores principales: | Liu, Hailang, Wang, Xinguang, Tang, Kun, Peng, Ejun, Xia, Ding, Chen, Zhiqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947454/ https://www.ncbi.nlm.nih.gov/pubmed/33718073 http://dx.doi.org/10.21037/tau-20-1208 |
Ejemplares similares
-
Predicting Prostate Cancer Upgrading of Biopsy Gleason Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Models
por: Liu, Hailang, et al.
Publicado: (2020) -
Retroperitoneoscopic nephrectomy versus open surgery for non-tuberculous pyonephrotic nonfunctioning kidney: a single-center experience
por: Wang, Xinguang, et al.
Publicado: (2021) -
A Case of Calculous Pyonephrosis
por: Black, Kenneth
Publicado: (1918) -
Added Value of Biparametric MRI and TRUS-Guided Systematic Biopsies to Clinical Parameters in Predicting Adverse Pathology in Prostate Cancer
por: Liu, Hailang, et al.
Publicado: (2020) -
Added Value of Systemic Inflammation Markers in Predicting Clinical Stage T1 Renal Cell Carcinoma Pathologically Upstaged to T3a
por: Liu, Hailang, et al.
Publicado: (2021)