Cargando…
Bioinformatics and integrated analyses of prognosis-associated key genes in lung adenocarcinoma
BACKGROUND: The objective of the present study was to predict candidate genes with prognostic information for lung adenocarcinoma (LUAD). METHODS: Weighted correlation network analysis (WGCNA) was utilized to build the co-expression network of deferentially expressed genes (DEGs) in GSE32863. Key ge...
Autores principales: | Zhu, Huijun, Yue, Haiying, Xie, Yiting, Chen, Binlin, Zhou, Yanhua, Liu, Wenqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947492/ https://www.ncbi.nlm.nih.gov/pubmed/33717590 http://dx.doi.org/10.21037/jtd-21-49 |
Ejemplares similares
-
A comprehensive bioinformatics analysis to identify a candidate prognostic biomarker for ovarian cancer
por: Zhu, Huijun, et al.
Publicado: (2021) -
Key genes involved with prognosis were identified in lung adenocarcinoma by integrated bioinformatics analysis
por: Song, Hao, et al.
Publicado: (2023) -
Bioinformatics Identification of Key Genes for the Development and Prognosis of Lung Adenocarcinoma
por: Luo, Xuan, et al.
Publicado: (2022) -
Identification of key candidate genes associated with prognosis of lung adenocarcinoma by integrated bioinformatical analysis
por: Li, Jinghang, et al.
Publicado: (2020) -
Bioinformatics and functional analyses of key genes in smoking-associated lung adenocarcinoma
por: Zhou, Dajie, et al.
Publicado: (2019)