Cargando…
Machine learning models for predicting critical illness risk in hospitalized patients with COVID-19 pneumonia
BACKGROUND: To develop machine learning classifiers at admission for predicting which patients with coronavirus disease 2019 (COVID-19) who will progress to critical illness. METHODS: A total of 158 patients with laboratory-confirmed COVID-19 admitted to three designated hospitals between December 3...
Autores principales: | Liu, Qin, Pang, Baoguo, Li, Haijun, Zhang, Bin, Liu, Yumei, Lai, Lihua, Le, Wenjun, Li, Jianyu, Xia, Tingting, Zhang, Xiaoxian, Ou, Changxing, Ma, Jianjuan, Li, Shenghao, Guo, Xiumei, Zhang, Shuixing, Zhang, Qingling, Jiang, Min, Zeng, Qingsi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947498/ https://www.ncbi.nlm.nih.gov/pubmed/33717594 http://dx.doi.org/10.21037/jtd-20-2580 |
Ejemplares similares
-
CT Quantification of COVID-19 Pneumonia at Admission Can Predict Progression to Critical Illness: A Retrospective Multicenter Cohort Study
por: Pang, Baoguo, et al.
Publicado: (2021) -
Fasting blood glucose predicts the occurrence of critical illness in COVID-19 patients: A multicenter retrospective cohort study
por: Liu, Qin, et al.
Publicado: (2020) -
Severe Asthma with Viral Infection can Develop into Eosinophilic Granulomatosis with Polyangiitis
por: Ou, Changxing, et al.
Publicado: (2021) -
Serum Cytokine Profiling Identifies Axl as a New Biomarker Candidate for Active Eosinophilic Granulomatosis With Polyangiitis
por: Ma, Jianjuan, et al.
Publicado: (2021) -
Lonicerin attenuates house dust mite-induced eosinophilic asthma through targeting Src/EGFR signaling
por: Deng, Zhenan, et al.
Publicado: (2022)