Cargando…
Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade
The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947885/ https://www.ncbi.nlm.nih.gov/pubmed/33717030 http://dx.doi.org/10.3389/fmicb.2021.636588 |
_version_ | 1783663320409047040 |
---|---|
author | Lahiri, Dibyajit Nag, Moupriya Sheikh, Hassan I. Sarkar, Tanmay Edinur, Hisham Atan Pati, Siddhartha Ray, Rina Rani |
author_facet | Lahiri, Dibyajit Nag, Moupriya Sheikh, Hassan I. Sarkar, Tanmay Edinur, Hisham Atan Pati, Siddhartha Ray, Rina Rani |
author_sort | Lahiri, Dibyajit |
collection | PubMed |
description | The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their “signal jamming effects” to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm. |
format | Online Article Text |
id | pubmed-7947885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79478852021-03-12 Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade Lahiri, Dibyajit Nag, Moupriya Sheikh, Hassan I. Sarkar, Tanmay Edinur, Hisham Atan Pati, Siddhartha Ray, Rina Rani Front Microbiol Microbiology The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their “signal jamming effects” to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm. Frontiers Media S.A. 2021-02-25 /pmc/articles/PMC7947885/ /pubmed/33717030 http://dx.doi.org/10.3389/fmicb.2021.636588 Text en Copyright © 2021 Lahiri, Nag, Sheikh, Sarkar, Edinur, Pati and Ray. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Lahiri, Dibyajit Nag, Moupriya Sheikh, Hassan I. Sarkar, Tanmay Edinur, Hisham Atan Pati, Siddhartha Ray, Rina Rani Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title | Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title_full | Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title_fullStr | Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title_full_unstemmed | Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title_short | Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade |
title_sort | microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947885/ https://www.ncbi.nlm.nih.gov/pubmed/33717030 http://dx.doi.org/10.3389/fmicb.2021.636588 |
work_keys_str_mv | AT lahiridibyajit microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT nagmoupriya microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT sheikhhassani microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT sarkartanmay microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT edinurhishamatan microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT patisiddhartha microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade AT rayrinarani microbiologicallysynthesizednanoparticlesandtheirroleinsilencingthebiofilmsignalingcascade |