Cargando…
Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
Single-cell RNA sequencing (scRNA-seq) has been rapidly developing and widely applied in biological and medical research. Identification of cell types in scRNA-seq data sets is an essential step before in-depth investigations of their functional and pathological roles. However, the conventional work...
Autores principales: | Zhao, Xinlei, Wu, Shuang, Fang, Nan, Sun, Xiao, Fan, Jue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7947964/ https://www.ncbi.nlm.nih.gov/pubmed/31675098 http://dx.doi.org/10.1093/bib/bbz096 |
Ejemplares similares
-
The effect of methanol fixation on single-cell RNA sequencing data
por: Wang, Xinlei, et al.
Publicado: (2021) -
Correction to: The effect of methanol fixation on single-cell RNA sequencing data
por: Wang, Xinlei, et al.
Publicado: (2021) -
scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
por: Nguyen, Vy, et al.
Publicado: (2022) -
Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data
por: Chu, Shih-Kai, et al.
Publicado: (2022) -
Evaluation of cell-cell interaction methods by integrating single-cell RNA sequencing data with spatial information
por: Liu, Zhaoyang, et al.
Publicado: (2022)