Cargando…

The flexible N-terminus of BchL autoinhibits activity through interaction with its [4Fe-4S] cluster and released upon ATP binding

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]–containing component proteins (BchL and BchNB) that assemb...

Descripción completa

Detalles Bibliográficos
Autores principales: Corless, Elliot I., Saad Imran, Syed Muhammad, Watkins, Maxwell B., Bacik, John-Paul, Mattice, Jenna R., Patterson, Angela, Danyal, Karamatullah, Soffe, Mark, Kitelinger, Robert, Seefeldt, Lance C., Origanti, Sofia, Bennett, Brian, Bothner, Brian, Ando, Nozomi, Antony, Edwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948495/
https://www.ncbi.nlm.nih.gov/pubmed/33219127
http://dx.doi.org/10.1074/jbc.RA120.016278
Descripción
Sumario:A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]–containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen–deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the ‘DFD patch’), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.