Cargando…
A Systematic Approach for MRI Brain Tumor Localization and Segmentation Using Deep Learning and Active Contouring
One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural network (CNN) and second a region-based convolut...
Autores principales: | Gunasekara, Shanaka Ramesh, Kaldera, H. N. T. K., Dissanayake, Maheshi B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948532/ https://www.ncbi.nlm.nih.gov/pubmed/33777346 http://dx.doi.org/10.1155/2021/6695108 |
Ejemplares similares
-
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation
Publicado: (2022) -
Brain Tumor Segmentation Using Deep Learning on MRI Images
por: Mostafa, Almetwally M., et al.
Publicado: (2023) -
Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy
por: Ding, Jie, et al.
Publicado: (2022) -
Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI
por: Zeng, Chenyi, et al.
Publicado: (2020) -
Accurate segmentation of neonatal brain MRI with deep learning
por: Richter, Leonie, et al.
Publicado: (2022)