Cargando…
A novel radiolytic rotenone derivative, rotenoisin A, displays potent anticarcinogenic activity in breast cancer cells
Chemotherapy for cancer treatment has therapeutic limitations, such as drug resistance, excessive toxic effects and undesirable adverse effects. Therefore, efforts to improve the safety and efficacy of chemotherapeutic agents are essential. Ionizing radiation can improve physiological and pharmacolo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948853/ https://www.ncbi.nlm.nih.gov/pubmed/33615367 http://dx.doi.org/10.1093/jrr/rrab005 |
Sumario: | Chemotherapy for cancer treatment has therapeutic limitations, such as drug resistance, excessive toxic effects and undesirable adverse effects. Therefore, efforts to improve the safety and efficacy of chemotherapeutic agents are essential. Ionizing radiation can improve physiological and pharmacological properties by transforming structural modifications of the drug. In this study, in order to reduce the adverse effects of rotenone and increase anticancer activity, a new radiolytic rotenone derivative called rotenoisin A was generated through radiolytic transformation. Our findings showed that rotenoisin A inhibited the proliferation of breast cancer cells and increased the rate of apoptosis, whereas it had no inhibitory effect on primary epidermal keratinocytes compared with rotenone. Moreover, rotenoisin A-induced DNA damage by increasing reactive oxygen species (ROS) accumulation. It was also confirmed not only to alter the composition ratio of mitochondrial proteins, but also to result in structural and functional changes. The anticancer effect and molecular signalling mechanisms of rotenoisin A were consistent with those of rotenone, as previously reported. Our study suggests that radiolytic transformation of highly toxic compounds may be an alternative strategy for maintaining anticancer effects and reducing the toxicity of the parent compound. |
---|