Cargando…
Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability
Problem: Chronological aging in later life is associated with brain degeneration processes and increased risk for disease such as stroke and dementia. With a worldwide tendency of aging populations and increased longevity, mental health, and psychiatric research have paid increasing attention to und...
Autores principales: | Ballester, Pedro L., da Silva, Laura Tomaz, Marcon, Matheus, Esper, Nathalia Bianchini, Frey, Benicio N., Buchweitz, Augusto, Meneguzzi, Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949912/ https://www.ncbi.nlm.nih.gov/pubmed/33716814 http://dx.doi.org/10.3389/fpsyt.2021.598518 |
Ejemplares similares
-
Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data
por: Tomaz Da Silva, Laura, et al.
Publicado: (2021) -
An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood
por: Leite, Leticia, et al.
Publicado: (2022) -
Comorbid Premenstrual Dysphoric Disorder and Bipolar Disorder: A Review
por: Slyepchenko, Anastasiya, et al.
Publicado: (2021) -
Interpreting wide-band neural activity using convolutional neural networks
por: Frey, Markus, et al.
Publicado: (2021) -
Identification of autism spectrum disorder using deep learning and the ABIDE dataset
por: Heinsfeld, Anibal Sólon, et al.
Publicado: (2017)