Cargando…

Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives

In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, Alison Barbara, Langer, Julian David, Jovanovic, Marko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7950106/
https://www.ncbi.nlm.nih.gov/pubmed/33556866
http://dx.doi.org/10.1074/mcp.R120.002190
Descripción
Sumario:In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here, we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable isotope–labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.